As early as in 1975, Shamos and Hoey first gave an O(n lg n)-time divide-and-conquer algorithm (Stt algorithm in short) for the problem of finding the closest pair of points. In one process of combination, the Euc...As early as in 1975, Shamos and Hoey first gave an O(n lg n)-time divide-and-conquer algorithm (Stt algorithm in short) for the problem of finding the closest pair of points. In one process of combination, the Euclidean distances between 3n pairs of points need to be computed, so the overall complexity of computing distance is then 3n lgn. Since the computation of distance is more costly compared with other basic operation, how to improve SH algorithm from the aspect of complexity of computing distance is considered. In 1998, Zhou, Xiong and Zhu improved SH algorithm by reducing this complexity to 2n lg n. In this paper, we make further improvement. The overall complexity of computing distances is reduced to (3n lg n)/2, which is only half that of SH algorithm.展开更多
基金This work is supported by the National Natural Science Foundation of China (Grant No. 60496321) and Shanghai Science and Technology Development Fund (Grant No. 025115032).
文摘As early as in 1975, Shamos and Hoey first gave an O(n lg n)-time divide-and-conquer algorithm (Stt algorithm in short) for the problem of finding the closest pair of points. In one process of combination, the Euclidean distances between 3n pairs of points need to be computed, so the overall complexity of computing distance is then 3n lgn. Since the computation of distance is more costly compared with other basic operation, how to improve SH algorithm from the aspect of complexity of computing distance is considered. In 1998, Zhou, Xiong and Zhu improved SH algorithm by reducing this complexity to 2n lg n. In this paper, we make further improvement. The overall complexity of computing distances is reduced to (3n lg n)/2, which is only half that of SH algorithm.