Ho-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by an acid-catalyzed sol-gel method. The photocatalytic decomposition of methyl orange in aqueous solution was used as a probe reaction to ...Ho-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by an acid-catalyzed sol-gel method. The photocatalytic decomposition of methyl orange in aqueous solution was used as a probe reaction to evaluate their photocatalytic activities. The effects of Ho doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalysts were investigated by means of techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Diffuse Reflectance UV-Vis Spectroscopy (UV-Vis DRS), Fourier Transform Infrared (FT-IR), and Photo-Luminiscence (PL) spectra. Moreover, the modification mechanism of Ho doping was also discussed. The results showed that Ho doping could inhibit phase transformation from anatase to rntile, suppress the growth of TiO2 grains, cause blue shift of the absorption spectrum edge, accelerate surface hydroxylation, and enhance the separation efficiency of photoinduced electron-hole pairs, which resulted in a significant improvement in the photoreactivity of Ho-doped TiO2. Among them, the Ho-doped TiO2 calcined at 500℃ achieved the highest photocatalytic activity.展开更多
Tb0.3Dy0.7HoxFe1.95(x=0.00, 0.05, 0.10, 0.15, 0.20, 0.35, 0.50, 0.65) quaternary alloys were prepared by arc-melting and followed by annealing.The phases present and structure of the alloys were determined using a D...Tb0.3Dy0.7HoxFe1.95(x=0.00, 0.05, 0.10, 0.15, 0.20, 0.35, 0.50, 0.65) quaternary alloys were prepared by arc-melting and followed by annealing.The phases present and structure of the alloys were determined using a D8-Advance X-ray diffractometer.The magnetostriction of the alloys was studied by standard strain gauge technique.The dependence of Ho content on the structure, magnetostriction and density of the alloys was investigated in detail.The research results showed that Ho-doping did not change MgCu2-type cubic Laves structure in Tb0.3Dy0.7Fe1.95.When Ho content x≤0.2, rich rare earth phase presented in the alloys increased and magnetostriction of the alloys reduced evidently with increasing x, but for alloys with x〉0.2, the content of rich rare earth phase started to reduce and the magnetostriction increased quickly, especially at low magnetic field in the alloy with x=0.65 due to separation of rich rare earth phases on the surface of the alloy.展开更多
基金Project supported by the National Natural Science Foundation of China (20677012)Foundation of Natural Science of Guangdong Province (04205301)Foundation of Science and Technology of Guangdong Province (2006A36701003)
文摘Ho-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by an acid-catalyzed sol-gel method. The photocatalytic decomposition of methyl orange in aqueous solution was used as a probe reaction to evaluate their photocatalytic activities. The effects of Ho doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalysts were investigated by means of techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Diffuse Reflectance UV-Vis Spectroscopy (UV-Vis DRS), Fourier Transform Infrared (FT-IR), and Photo-Luminiscence (PL) spectra. Moreover, the modification mechanism of Ho doping was also discussed. The results showed that Ho doping could inhibit phase transformation from anatase to rntile, suppress the growth of TiO2 grains, cause blue shift of the absorption spectrum edge, accelerate surface hydroxylation, and enhance the separation efficiency of photoinduced electron-hole pairs, which resulted in a significant improvement in the photoreactivity of Ho-doped TiO2. Among them, the Ho-doped TiO2 calcined at 500℃ achieved the highest photocatalytic activity.
基金supported by the National Natural Science Foundation of China(50661002)Guangxi Provincial Natural Science Foundation of China (0575095)
文摘Tb0.3Dy0.7HoxFe1.95(x=0.00, 0.05, 0.10, 0.15, 0.20, 0.35, 0.50, 0.65) quaternary alloys were prepared by arc-melting and followed by annealing.The phases present and structure of the alloys were determined using a D8-Advance X-ray diffractometer.The magnetostriction of the alloys was studied by standard strain gauge technique.The dependence of Ho content on the structure, magnetostriction and density of the alloys was investigated in detail.The research results showed that Ho-doping did not change MgCu2-type cubic Laves structure in Tb0.3Dy0.7Fe1.95.When Ho content x≤0.2, rich rare earth phase presented in the alloys increased and magnetostriction of the alloys reduced evidently with increasing x, but for alloys with x〉0.2, the content of rich rare earth phase started to reduce and the magnetostriction increased quickly, especially at low magnetic field in the alloy with x=0.65 due to separation of rich rare earth phases on the surface of the alloy.