Histone acetylation and deacetylation are directly connected with transcriptional activation and silencing in eukaryotes. Gene families for enzymes that accomplish these histone modifications show surprising complexit...Histone acetylation and deacetylation are directly connected with transcriptional activation and silencing in eukaryotes. Gene families for enzymes that accomplish these histone modifications show surprising complexity in domain organization, tissue-specific expression, and function. This review is focused on the family of histone deacetylases (HDACs) that remove the acetyl group from core histone tails, resulting in a "closed" chromatin and transcriptional repression. In Arabidopsis, 18 HDAC genes are divided into three different types - RPD3-1ike, HD-tuin and sirtuin - with two or more members in each type. The structural feature of each HDAC class, the expression profile of each HDAC gene during development and functional insights of important family members are summarized here. It is clear that HDACs are an important class of global transcriptional regulators that play crucial roles in plant development, defense, and adaptation.展开更多
The quantitative induction of VIN3 by low temperatures is required for PRC2 repression of FLC and promotion of flowering (vernalization) in Arabidopsis. Histone acetylation, a chromatin modification commonly associa...The quantitative induction of VIN3 by low temperatures is required for PRC2 repression of FLC and promotion of flowering (vernalization) in Arabidopsis. Histone acetylation, a chromatin modification commonly associated with gene transcription, increased on VIN3 chromatin in two spatially and temporally distinct phases in response to low temperatures. During short-term cold exposure, histone H3 acetylation at the transcription start site rapidly increased, implying that it is required for VlN3 induction. Subsequent changes in histone H3 and H4 acetylation occurred following continued VIN3 transcription during prolonged cold exposure. Members of the SAGA-like transcriptional adaptor complex, including the histone acetyltransferase GCNS, which induces expression of the cold acclimation pathway genes, do not regulate VlN3 induction during cold exposure, indicating that the cold acclimation pathway and the cold-induction of VlN3 are regulated by different transcriptional mechanisms. Mutations in the other 11 histone acetyltransferase genes did not affect VlN3 induction. However, nicotinamide, a histone deacetyiase inhibitor, induced VIN3 and altered histone acetylation at the VIN3 locus. VIN3 induction was proportional to the length of nicotinamide treatment, which was associated with an early-flowering phenotype and repression of FLC. However, unlike vernalization, the repression of FLC was independent of VIN3 activity. Nicotinamide treatment did not cause a change in the expression of any genes in the autonomous pathway or members of the PRC2 complex, the well characterized repressors of FLC. Our data suggest that FLC is repressed via a novel pathway involving the SIR2 class of histone deacetylases.展开更多
Chronic obstructive pulmonary disease (COPD) is a major global health problem with a rising morbidity and mortality, which is expected to account for about 27% of tobacco related deaths and is anticipated to move fr...Chronic obstructive pulmonary disease (COPD) is a major global health problem with a rising morbidity and mortality, which is expected to account for about 27% of tobacco related deaths and is anticipated to move from the fifth to the fourth leading cause of death worldwide from 2002 to 2030.1 COPD is characterized by the abnormal and chronic inflammation induced by cigarette smoking and other inflammatory insults in both small airway and lung parenchyma.2'3 Glucocorticosteroids (also called glucocorticoids, corticosteroids or steroids) are the most effective anti-inflammatory drugs available for the treatment of many chronic inflammatory and immune diseases.展开更多
基金the National Science Foundation Grant IOB0616096 to Z.L.
文摘Histone acetylation and deacetylation are directly connected with transcriptional activation and silencing in eukaryotes. Gene families for enzymes that accomplish these histone modifications show surprising complexity in domain organization, tissue-specific expression, and function. This review is focused on the family of histone deacetylases (HDACs) that remove the acetyl group from core histone tails, resulting in a "closed" chromatin and transcriptional repression. In Arabidopsis, 18 HDAC genes are divided into three different types - RPD3-1ike, HD-tuin and sirtuin - with two or more members in each type. The structural feature of each HDAC class, the expression profile of each HDAC gene during development and functional insights of important family members are summarized here. It is clear that HDACs are an important class of global transcriptional regulators that play crucial roles in plant development, defense, and adaptation.
文摘The quantitative induction of VIN3 by low temperatures is required for PRC2 repression of FLC and promotion of flowering (vernalization) in Arabidopsis. Histone acetylation, a chromatin modification commonly associated with gene transcription, increased on VIN3 chromatin in two spatially and temporally distinct phases in response to low temperatures. During short-term cold exposure, histone H3 acetylation at the transcription start site rapidly increased, implying that it is required for VlN3 induction. Subsequent changes in histone H3 and H4 acetylation occurred following continued VIN3 transcription during prolonged cold exposure. Members of the SAGA-like transcriptional adaptor complex, including the histone acetyltransferase GCNS, which induces expression of the cold acclimation pathway genes, do not regulate VlN3 induction during cold exposure, indicating that the cold acclimation pathway and the cold-induction of VlN3 are regulated by different transcriptional mechanisms. Mutations in the other 11 histone acetyltransferase genes did not affect VlN3 induction. However, nicotinamide, a histone deacetyiase inhibitor, induced VIN3 and altered histone acetylation at the VIN3 locus. VIN3 induction was proportional to the length of nicotinamide treatment, which was associated with an early-flowering phenotype and repression of FLC. However, unlike vernalization, the repression of FLC was independent of VIN3 activity. Nicotinamide treatment did not cause a change in the expression of any genes in the autonomous pathway or members of the PRC2 complex, the well characterized repressors of FLC. Our data suggest that FLC is repressed via a novel pathway involving the SIR2 class of histone deacetylases.
文摘Chronic obstructive pulmonary disease (COPD) is a major global health problem with a rising morbidity and mortality, which is expected to account for about 27% of tobacco related deaths and is anticipated to move from the fifth to the fourth leading cause of death worldwide from 2002 to 2030.1 COPD is characterized by the abnormal and chronic inflammation induced by cigarette smoking and other inflammatory insults in both small airway and lung parenchyma.2'3 Glucocorticosteroids (also called glucocorticoids, corticosteroids or steroids) are the most effective anti-inflammatory drugs available for the treatment of many chronic inflammatory and immune diseases.