Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the ...Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hy- perbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig- nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im- proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me- diated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.展开更多
There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The pr...There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 m L/kg saline. Behavioral test(the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease.展开更多
文摘Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hy- perbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was sig- nificantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly im- proves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is me- diated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.
基金funded by the Department of Biology,Faculty of Science,Arak University,Iran,No.38156-8-8349
文摘There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 m L/kg saline. Behavioral test(the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease.
基金supported by the Natural Science Foundation of Anhui ProvinceChina(No.090413096)+1 种基金College Student Innovation and Entrepreneurship Training Plan of Anhui ProvinceChina(No.AH201310368104)
文摘本研究旨在探讨与动物空间辨别学习能力相关的神经振荡电活动及其改变。运用Y型迷宫电击回避训练方法,筛选出与空间认知能力相关的快回避反应组和普通回避反应组大鼠,无线遥测两组动物在电击回避实验前、后海马CA3区实时局部场电位(local field potential,LFP),分析与空间辨别和学习能力相关的神经振荡成分变化。结果显示,与普通回避反应组大鼠比较,电击回避训练前快回避反应组大鼠左侧海马CA3区LFP成分无显著差异,但电击回避训练后,右侧海马CA3区0~10 Hz和30~40 Hz电节律百分比显著增加(P<0.01或P<0.05);快速傅里叶变换显示,0~10 Hz频段百分比增加主要发生在θ波(3~7 Hz)频段,而30~40 Hz频段改变相当于γ1频段。进一步将两组大鼠训练前后的右侧CA3区神经振荡进行自身比较,结果显示训练后快回避反应组大鼠仅出现β波、β2(20~30 Hz)和γ1节律百分比增加,θ波节律百分比在训练前后无明显变化,而普通回避反应组大鼠训练前后比较显示,训练后右侧CA3区θ波节律百分比和大幅波(强度:+2.5^-2.5 db)显著减少(P<0.01)。本研究结果显示,快回避反应组大鼠电击回避训练后,右侧海马CA3区β2和γ1节律百分比增加,θ波节律百分比保持较高水平,这些改变可能与其较强的空间认知能力有关。