期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
p-Capitulation over Number Fields with p-Class Rank Two 被引量:2
1
作者 Daniel C. Mayer 《Journal of Applied Mathematics and Physics》 2016年第7期1280-1293,共14页
Theoretical foundations of a new algorithm for determining the p-capitulation type ù(K) of a number field K with p-class rank ?=2 are presented. Since ù(K) alone is insufficient for identifying the seco... Theoretical foundations of a new algorithm for determining the p-capitulation type ù(K) of a number field K with p-class rank ?=2 are presented. Since ù(K) alone is insufficient for identifying the second p-class group  G=Gal(F<sub>p</sub><sup>2</sup>K∣K) of K, complementary techniques are deve- loped for finding the nilpotency class and coclass of . An implementation of the complete algorithm in the computational algebra system Magma is employed for calculating the Artin pattern  AP(K)=(τ (K),ù(K)) of all 34631 real quadratic fields K=Q(√d) with discriminants  0d<10<sup>8</sup> and 3-class group of type (3, 3). The results admit extensive statistics of the second 3-class groups G=Gal(F<sub>3</sub><sup>2</sup>K∣K) and the 3-class field tower groups G=Gal(F<sub>3</sub><sup>∞</sup>K∣K). 展开更多
关键词 hilbert p-class field tower Maximal Unramified pro-p Extension p-Capitulation of class Groups Real Quadratic fields (3 3)
下载PDF
Criteria for Three-Stage Towers of <i>p</i>-Class Fields
2
作者 Daniel C. Mayer 《Advances in Pure Mathematics》 2017年第2期135-179,共45页
Let p be a prime and K be a number field with non-trivial p-class group ClpK. A crucial step in identifying the Galois group G∞p of the maximal unramified pro-p extension of K is to determine its two-stage approximat... Let p be a prime and K be a number field with non-trivial p-class group ClpK. A crucial step in identifying the Galois group G∞p of the maximal unramified pro-p extension of K is to determine its two-stage approximation M=G2pk, that is the second derived quotient M&simeq;G/Gn. The family τ1K of abelian type invariants of the p-class groups ClpL of all unramified cyclic extensions L/K of degree p is called the index- abelianization data (IPAD) of K. It is able to specify a finite batch of contestants for the second p-class group M of K. In this paper we introduce two different kinds of generalized IPADs for obtaining more sophisticated results. The multi-layered IPAD (τ1Kτ(2)K) includes data on unramified abelian extensions L/K of degree p2 and enables sharper bounds for the order of M in the case Clpk&simeq;(p,p,p), where current im-plementations of the p-group generation algorithm fail to produce explicit contestants for M , due to memory limitations. The iterated IPAD of second order τ(2)K contains information on non-abelian unramified extensions L/K of degree p2, or even p3, and admits the identification of the p-class tower group G for various infinite series of quadratic fields K=Q(√d) with ClpK&simeq;(p,p) possessing a p-class field tower of exact length lpK=3 as a striking novelty. 展开更多
关键词 hilbert p-class field tower p-class GROUp p-principalization Types Quadratic fields Unramified Cyclic Cubic field Extensions p-class tower GROUp Relation Rank Metabelianization Coclass Graphs
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部