期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
HHT与RBF神经网络在离心泵故障振动信号处理中的应用
被引量:
16
1
作者
周云龙
洪君
赵鹏
《热能动力工程》
EI
CAS
CSCD
北大核心
2007年第1期84-87,共4页
根据离心泵故障振动信号的特点,提出了一种Hilbert-Huang变换(HHT)和径向基(RBF)神经网络相结合的离心泵振动信号故障诊断新方法。首先,将离心泵振动信号时间序列数据经验模态分解(Empirical Mode Decomposition,简称EMD),然后经过Hilbe...
根据离心泵故障振动信号的特点,提出了一种Hilbert-Huang变换(HHT)和径向基(RBF)神经网络相结合的离心泵振动信号故障诊断新方法。首先,将离心泵振动信号时间序列数据经验模态分解(Empirical Mode Decomposition,简称EMD),然后经过Hilbert-Huang变换获得各模态(Intrinsic Mode Functions,简称IMF)的能量,并以“能量比”为元素,利用能量比构造离心泵振动信号的特征向量可以很好刻画不同振动故障信息;应用RBF神经网络建立了从特征向量到故障模式之间的映射实现故障的诊断,对于离心泵的正常状态、质量不平衡、转子不对中和基础松动故障具有很高的诊断率。实验研究结果表明,该方法可以有效地对离心泵振动信号进行诊断。
展开更多
关键词
离心泵
hilbeft
—
huang
换
RBF神经网络
故障诊断
下载PDF
职称材料
题名
HHT与RBF神经网络在离心泵故障振动信号处理中的应用
被引量:
16
1
作者
周云龙
洪君
赵鹏
机构
东北电力大学能源与机械工程学院
出处
《热能动力工程》
EI
CAS
CSCD
北大核心
2007年第1期84-87,共4页
文摘
根据离心泵故障振动信号的特点,提出了一种Hilbert-Huang变换(HHT)和径向基(RBF)神经网络相结合的离心泵振动信号故障诊断新方法。首先,将离心泵振动信号时间序列数据经验模态分解(Empirical Mode Decomposition,简称EMD),然后经过Hilbert-Huang变换获得各模态(Intrinsic Mode Functions,简称IMF)的能量,并以“能量比”为元素,利用能量比构造离心泵振动信号的特征向量可以很好刻画不同振动故障信息;应用RBF神经网络建立了从特征向量到故障模式之间的映射实现故障的诊断,对于离心泵的正常状态、质量不平衡、转子不对中和基础松动故障具有很高的诊断率。实验研究结果表明,该方法可以有效地对离心泵振动信号进行诊断。
关键词
离心泵
hilbeft
—
huang
换
RBF神经网络
故障诊断
Keywords
centrifugal pump,Hilbert-
huang
transformation,RBF(radial basis function) neural network,fault diagnosis
分类号
TH311 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
HHT与RBF神经网络在离心泵故障振动信号处理中的应用
周云龙
洪君
赵鹏
《热能动力工程》
EI
CAS
CSCD
北大核心
2007
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部