The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in ...The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in view of applications to the theory of finite asymptotic expansions in the real domain, the asymptotic study of ordinary differential equations and the like. The main results concern: 1) a detailed study of the types of asymptotic variation of an infinite series so extending the results known for the sole power series;2) the type of asymptotic variation of a Wronskian completing the many already-published results on the asymptotic behaviors of Wronskians;3) a comparison between the two main standard approaches to the concept of “type of asymptotic variation”: via an asymptotic differential equation or an asymptotic functional equation;4) a discussion about the simple concept of logarithmic variation making explicit and completing the results which, in the literature, are hidden in a quite-complicated general theory.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
文摘The purpose of this paper is to add some complements to the general theory of higher-order types of asymptotic variation developed in two previous papers so as to complete our elementary (but not too much!) theory in view of applications to the theory of finite asymptotic expansions in the real domain, the asymptotic study of ordinary differential equations and the like. The main results concern: 1) a detailed study of the types of asymptotic variation of an infinite series so extending the results known for the sole power series;2) the type of asymptotic variation of a Wronskian completing the many already-published results on the asymptotic behaviors of Wronskians;3) a comparison between the two main standard approaches to the concept of “type of asymptotic variation”: via an asymptotic differential equation or an asymptotic functional equation;4) a discussion about the simple concept of logarithmic variation making explicit and completing the results which, in the literature, are hidden in a quite-complicated general theory.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.