期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
High-Energy Lithium-Ion Batteries:Recent Progress and a Promising Future in Applications 被引量:11
1
作者 Jingjing Xu Xingyun Cai +4 位作者 Songming Cai Yaxin Shao Chao Hu Shirong Lu Shujiang Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期60-85,共26页
It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great ... It is of great significance to develop clean and new energy sources with high-efficient energy storage technologies,due to the excessive use of fossil energy that has caused severe environmental damage.There is great interest in exploring advanced rechargeable lithium batteries with desirable energy and power capabilities for applications in portable electronics,smart grids,and electric vehicles.In practice,high-capacity and low-cost electrode materials play an important role in sustaining the progresses in lithium-ion batteries.This review aims at giving an account of recent advances on the emerging high-capacity electrode materials and summarizing key barriers and corresponding strategies for the practical viability of these electrode materials.Effective approaches to enhance energy density of lithium-ion batteries are to increase the capacity of electrode materials and the output operation voltage.On account of major bottlenecks of the power lithium-ion battery,authors come up with the concept of integrated battery systems,which will be a promising future for high-energy lithium-ion batteries to improve energy density and alleviate anxiety of electric vehicles. 展开更多
关键词 high-capacity electrode materials high-energy lithium-ion batteries high-voltage cathodes integrated battery systems organic cathode materials
下载PDF
Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery 被引量:10
2
作者 XiaoLong Xu SiXu Deng +2 位作者 Hao Wang JingBing Liu Hui Yan 《Nano-Micro Letters》 SCIE EI CAS 2017年第2期97-115,共19页
High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltage... High-voltage lithium-ion batteries(HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating,electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods. 展开更多
关键词 high-voltage cathode LINI0.5MN1.5O4 Lithium-ion battery Cycling stability Platform voltage
下载PDF
Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries 被引量:11
3
作者 Yong Cheng Yan Sun +6 位作者 Changting Chu Limin Chang Zhaomin Wang Dongyu Zhang Wanqiang Liu Zechao Zhuang Limin Wang 《Nano Research》 SCIE EI CSCD 2022年第5期4091-4099,共9页
High-voltage high-nickel lithium layered oxide cathodes show great application prospects to meet the ever-increasing demand for further improvement of the energy density of rechargeable lithium-ion batteries(LIBs)main... High-voltage high-nickel lithium layered oxide cathodes show great application prospects to meet the ever-increasing demand for further improvement of the energy density of rechargeable lithium-ion batteries(LIBs)mainly due to their high output capacity.However,severe bulk structural degradation and undesired electrode-electrolyte interface reactions seriously endanger the cycle life and safety of the battery.Here,2 mol%Ti atom is used as modified material doping into LiNi_(0.8)Co_(0.2)Mn_(0.2O2)(NCM)to reform LiNi_(0.6)Co_(0.2)Mn_(0.18)Ti_(0.02)O_(2)(NCM-Ti)and address the long-standing inherent problem.At a high cut-off voltage of 4.5 V,NCM-Ti delivers a higher capacity retention ratio(91.8%vs.82.9%)after 150 cycles and a superior rate capacity(118 vs.105 mAh·g^(-1))at the high current density of 10 C than the pristine NCM.The designed high-voltage full battery with graphite as anode and NCM-Ti as cathode also exhibits high energy density(240 Wh·kg^(-1))and excellent electrochemical performance.The superior electrochemical behavior can be attributed to the improved stability of the bulk structure and the electrode-electrolyte interface owing to the strong Ti-O bond and no unpaired electrons.The in-situ X-ray diffraction analysis demonstrates that Ti-doping inhibits the undesired H2-H3 phase transition,minimizing the mechanical degradation.The ex-situ TEM and X-ray photoelectron spectroscopy reveal that Ti-doping suppresses the release of interfacial oxygen,reducing undesired interfacial reactions.This work provides a valuable strategic guideline for the application of high-voltage high-nickel cathodes in LIBs. 展开更多
关键词 lithium-ion battery high-voltage high-nickel cathode Ti-doping structural stability interface stability
原文传递
LiF and LiNO_(3) as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dualinterfaces stability 被引量:8
4
作者 Liansheng Li Yuanfu Deng +2 位作者 Huanhuan Duan Yunxian Qian Guohua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期319-328,共10页
Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode si... Solid electrolytes with desirable properties such as high ionic conductivity,wide electrochemical stable window,and suitable mechanical strength,and stable electrode-electrolyte interfaces on both cathode and anode side are essential for high-voltage all-solid-state lithium batteries(ASSLBs)to achieve excellent cycle stability.In this work,a novel strategy of using LiF and LiNO_(3) as synergistic additives to boost the performance of PEO-PVDF/LLZTO-based composite solid electrolytes(CSEs)is developed,which also promotes the assembled high-voltage ASSLBs with dual-interfaces stability characteristic.Specifically,LiF as an inactive additive can increase the electrochemical stability of the CSE under high cut-off voltage,and improve the high-voltage compatibility between cathode and CSE,thus leading to a stable cathode/CSE interface.LiNO_(3) as an active additive can lead to an enhanced ionic conductivity of CSE due to the increased free-mobile Li+and ensure a stable CSE/Li interface by forming stable solid electrolyte interphase(SEI)on Li anode surface.Benefiting from the improved performance of CSE and stable dualinterfaces,the assembled NCM622/9[PEO_(15)-LiTFSI]-PVDF-15 LLZTO-2 LiF-3 LiNO_(3)/Li cell delivers a high rate capacity of 102.1 mAh g^(-1) at 1.0 C and a high capacity retention of 77.4%after 200 cycles at 0.5 C,which are much higher than those of the ASSLB assembled with additive-free CSE,with only 60.0 mAh g^(-1) and 52.0%,respectively.Furthermore,novel cycle test modes of resting for 5 h at different charge states after every 5 cycles are designed to investigate the high-voltage compatibility between cathode and CSE,and the results suggest that LiF additive can actually improve the high-voltage compatibility of cathode and CSE.All the obtained results confirm that the strategy of using synergistic additives in CSE is an effective way to achieve high-voltage ASSLBs with dual-interfaces stability. 展开更多
关键词 Synergistic additives Composite solid electrolyte Dual-interfaces stability high-voltage cathode Lithium metal battery
下载PDF
高电压钴酸锂正极材料掺杂、包覆及复合改性 被引量:7
5
作者 刘小虹 李国敏 《电池工业》 CAS 2019年第6期314-318,共5页
锂离子电池作为储能器件在日常生活中发挥着重要的作用,社会日益增长的能源需求,要求锂离子电池具有更高的能量密度和更好的性能。提高工作电压是提高锂离子电池能量密度的一种直接方法。本文对近年来高压钴酸锂正极材料掺杂、包覆及复... 锂离子电池作为储能器件在日常生活中发挥着重要的作用,社会日益增长的能源需求,要求锂离子电池具有更高的能量密度和更好的性能。提高工作电压是提高锂离子电池能量密度的一种直接方法。本文对近年来高压钴酸锂正极材料掺杂、包覆及复合改性的研究进展进行了综述。复合包覆以及复合改性将是高电压钴酸锂正极材料重点研究开发方向,运用不同的改性方法可以有效抑制钴酸锂在高电压下的结构变化,提升钴酸锂晶体结构的稳定性和界面稳定性,从而提高钴酸锂在高电压下的克比容量、热稳定性、循环稳定性和倍率性能,并使得锂离子电池各项性能得到改善。 展开更多
关键词 高电压 钴酸锂 正极材料 掺杂 包覆 复合改性
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
6
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries high-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase cathode electrolyte interphase
下载PDF
Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating 被引量:5
7
作者 Yabin Shen Yingqiang Wu +6 位作者 Dongyu Zhang Yao Liang Dongming Yin Limin Wang Licheng Wang Jingchao Cao Yong Cheng 《Nano Research》 SCIE EI CSCD 2023年第4期5973-5982,共10页
High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are becoming a popular development route for high-energy lithium-ion batteries due to their relatively high capacity,low cost,and improved ... High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are becoming a popular development route for high-energy lithium-ion batteries due to their relatively high capacity,low cost,and improved safety.Unfortunately,capacity fading derived from surface lithium residue,electrode-electrolyte interfacial side reactions,and bulk structure degradation severely limits large-scale commercial utilization.In this work,an ultrathin and uniform NASICON-type Li_(3)V_(2)(PO_(4))_(3)(LVP)nanoscale functional coating is formed in situ by utilizing residual lithium to enhance the lithium storage performance of LiNi_(0.6)Co0.05Mn_(0.35)O_(2)(NCM)cathode.The GITT and ex-situ EIS and XPS demonstrate exceptional Li+diffusion and conductivity and attenuated interfacial side reactions,improving the electrode-electrolyte interface stability.The variable temperature in-situ XRD demonstrates delayed phase transition temperature to improve thermal stability.The battery in-situ XRD displays the singlephase H1-H2 reaction and weakened harmful H3 phase transition,minimizing the bulk mechanical degradation.These improvements are attributed to the removal of surface residual lithium and the formation of NASICON-type Li_(3)V_(2)(PO_(4))_(3)functional coatings with stable structure and high ionic and electronic conductivity.Consequently,the obtained NCM@LVP delivers a higher capacity retention rate(97.1%vs.79.6%)after 150 cycles and a superior rate capacity(87 mAh·g^(-1)vs.58 mAh·g^(-1))at a 5 C current density than the pristine NCM under a high cut-off voltage of 4.5 V.This work suggests a clever way to utilize residual lithium to form functional coatings in situ to improve the lithium storage performance of high-voltage medium-nickel low-cobalt cathode materials. 展开更多
关键词 lithium-ion battery high-voltage medium-nickel low-cobalt cathode surface modification residual lithium NASICON-type Li3V2(PO4)3
原文传递
Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries 被引量:6
8
作者 Ge Yao Xixue Zhang +7 位作者 Yongliang Yan Jiyu Zhang Keming Song Juan Shi Liwei Mi Jinyun Zheng Xiangming Feng Weihua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期387-394,共8页
Fe-based sulfates are ideal cathode candidates for sodium-ion batteries(SIBs) owing to their high operating voltage and low cost but suffer from the nature of poor power performance. Herein, a hierarchical porous Na2F... Fe-based sulfates are ideal cathode candidates for sodium-ion batteries(SIBs) owing to their high operating voltage and low cost but suffer from the nature of poor power performance. Herein, a hierarchical porous Na2Fe(SO4)2@reduced graphene oxide/carbon dot(Na2Fe(SO4)2@rGO/C) with low carbon content(4.12 wt%) was synthesized via a facile homogeneous strategy benefiting for engineering application,which delivers excellent sodium storage performance(high voltage plateau of 3.75 V, 85 m Ah g-1 and330 Wh kg-1 at 0.05 C;5805 W kg-1 at 10 C) and high Na+diffusion coefficient(1.19 × 10-12 cm2 s-1).Moreover, the midpoint voltage of assembled full cell could reach 3.0 V. The electron transfer and reaction kinetics are effectively boosted since the nanoscale Na2Fe(SO4)2 is supported by a robust crosslinked carbon matrix with rGO sheets and carbon dots. The slight rGO sheets sufficiently enhance the electron transfer like a current collecter and restrain the aggregation, as well as ensure smooth ion channels. Meanwhile, the carbon dots in the whole space connect with Na2Fe(SO4)2 and help rGO to promote the conductivity of the electrode. Ex-situ X-ray powder diffraction and X-ray photoelectron spectrometry analysis confirm the high reversibility of this sodiation/desodiation process. 展开更多
关键词 Sodium ion batteries high-voltage cathode Fe-based sulfates Full cell Hierarchical structure
下载PDF
Enabling Argyrodite Sulfides as Superb Solid-State Electrolyte with Remarkable Interfacial Stability Against Electrodes 被引量:6
9
作者 Hongjie Xu Guoqin Cao +4 位作者 Yonglong Shen Yuran Yu Junhua Hu Zhuo Wang Guosheng Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期852-864,共13页
While argyrodite sulfides are getting more and more attention as highly promising solid-state electrolytes(SSEs)for solid batteries,they also suffer from the typical sulfide setbacks such as poor electrochemical compa... While argyrodite sulfides are getting more and more attention as highly promising solid-state electrolytes(SSEs)for solid batteries,they also suffer from the typical sulfide setbacks such as poor electrochemical compatibility with Li anode and high-voltage cathodes and serious sensitivity to humid air,which hinders their practical applications.Herein,we have devised an effective strategy to overcome these challenging shortcomings through modification of chalcogen chemistry under the guidance of theoretical modeling.The resultant Li_(6.25)PS_(4)O_(1.25)Cl_(0.75)delivered excellent electrochemical compatibility with both pure Li anode and high-voltage LiCoO_(2)cathode,without compromising the superb ionic conductivity of the pristine sulfide.Furthermore,the current SSE also exhibited highly improved stability to oxygen and humidity,with further advantage being more insulating to electrons.The remarkably enhanced compatibility with electrodes is attributed to in situ formation of helpful electrolyte–electrode interphases.The formation of in situ anode–electrolyte interphase(AEI)enabled stable Li plating/stripping in the Li|Li_(6.25)PS_(4)O_(1.25)Cl_(0.75)|Li symmetric cells at a high current density up to 1 mA cm^(-2)over 200 h and 2 mA cm^(-2)for another 100 h.The in situ amorphous nano-film cathode–electrolyte interphase(CEI)facilitated protection of the SSE from decomposition at elevated voltage.Consequently,the synergistic effect of AEI and CEI helped the LiCoO_(2)|Li_(6.25)PS_(4)O_(1.25)Cl_(0.75)|Li full-battery cell to achieve markedly better cycling stability than that using the pristine Li_(6)PS_(5)Cl as SSE,at a high area loading of the active cathode material(4 mg cm^(-2))in type-2032 coin cells.This work is to add a desirable SSE in the argyrodite sulfide family,so that high-performance solid battery cells could be fabricated without the usual need of strict control of the ambient atmosphere. 展开更多
关键词 al oying chemistry argyrodite sulfide compatibility with high-voltage cathode and lithium anode fast solid lithium ion conductor resilience to humid air
下载PDF
Fluorine-substituted O3-type NaNi_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(2-x)F_(x) cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage 被引量:5
10
作者 Chaojin Zhou Lichun Yang +4 位作者 Chaogang Zhou Jiangwen Liu Renzong Hu Jun Liu Min Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期341-350,共10页
O3-type Na NiO_(2)-based cathode materials undergo irreversible phase transition and serious capacity decay at high voltage above 4.0 V in sodium-ion batteries. To address these challenges, effects of Fsubstitution on... O3-type Na NiO_(2)-based cathode materials undergo irreversible phase transition and serious capacity decay at high voltage above 4.0 V in sodium-ion batteries. To address these challenges, effects of Fsubstitution on the structure and electrochemical performance of Na Ni_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(2) are investigated in this article. The F-substitution leads to expanding of interlayer, which can enhance the mobility of Na+. NaNi_(0.4)Mn_(0.25)Ti_(0.3)Co_(0.05)O_(1.92)F_(0.08)(NMTC-F_(0.08)) with the optimal F-substitution degree exhibits much improved rate capability and cyclic stability. It delivers reversible capacities of 177 and 97 m Ah g^(-1) at 0.05 and 5 C within 2.0–4.4 V, respectively. Galvanostatic intermittent titration technique verifies faster kinetics of Na+diffusion in NMTC-F_(0.08). And in-situ XRD investigation reveals the phase evolution of NMTC-F_(0.08), indicating enhanced structural stability results from F-substitution. This study may shed light on the development of high performance cathode materials for sodium-ion storage at high voltage. 展开更多
关键词 F-substitution Sol-gel method O3-type cathode Sodium-ion battery high-voltage cathode
下载PDF
Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries 被引量:5
11
作者 Jiawen Li Yuchen Ji +6 位作者 Haoran Song Shiming Chen Shouxiang Ding Bingkai Zhang Luyi Yang Yongli Song Feng Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期1-13,共13页
Poly(ethylene oxide)(PEO)-based solid polymer electrolyte(SPE)is considered as a promising solid-state electrolyte for all-solid-state lithium batteries(ASSLBs).Nevertheless,the poor interfacial stability with high-vo... Poly(ethylene oxide)(PEO)-based solid polymer electrolyte(SPE)is considered as a promising solid-state electrolyte for all-solid-state lithium batteries(ASSLBs).Nevertheless,the poor interfacial stability with high-voltage cathode materials(e.g.,LiCoO_(2))restricts its application in high energy density solid-state batteries.Herein,high-voltage stable Li_(3)AlF_(6) protective layer is coated on the surface of LiCoO_(2) particle to improve the performance and investigate the failure mechanism of PEO-based ASSLBs.The phase transition unveils that chemical redox reaction occurs between the highly reactive LiCoO_(2) surface and PEO-based SPE,resulting in structure collapse of LiCoO_(2),hence the poor cycle performance of PEO-based ASSLBs with LiCoO_(2) at charging voltage of 4.2 V vs Li/Li+.By sharp contrast,no obvious structure change can be found at the surface of Li_(3)AlF_(6)-coated LiCoO_(2),and the original layered phase was well retained.When the charging voltage reaches up to 4.5 V vs Li/Li+,the intensive electrochemical decomposition of PEO-based SPE occurs,leading to the constant increase of cell impedance and directly causing the poor performance.This work not only provides important supplement to the failure mechanism of PEO-based batter-ies with LiCoO_(2),but also presents a universal strategy to retain structure stability of cathode-electrolyte interface in high-voltage ASSLBs. 展开更多
关键词 Solid-state battery Poly(ethylene oxide) Surface modification Interface stability high-voltage cathode
下载PDF
How do high-voltage cathode and PEO electrolyte get along well?EIS analysis mechanism&potentiometric control strategy
12
作者 Xiaodong Bai Chaoliang Zheng +4 位作者 Heng Zhang Jian Liu Panpan Wang Baojia Xia Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期424-436,共13页
PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface p... PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented. 展开更多
关键词 PEo-based electrolyte high-voltage cathode Electrochemical impedance spectroscopy Mechanism research Electrochemical characteristic
下载PDF
One-step calcination synthesis of interface-coherent crystallized and surface-passivated LiNi_(0.5)Mn_(1.5)O_(4) for high-voltage lithium-ion battery
13
作者 Min Xu Bifu Sheng +8 位作者 Yong Cheng Junjie Lu Minfeng Chen Peng Wang Bo Liu Jizhang Chen Xiang Han Ming-Sheng Wang Siqi Shi 《Nano Research》 SCIE EI CSCD 2024年第5期4192-4202,共11页
LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)with a spinel crystal structure presents a compelling avenue towards the development of economic cobalt-free and high voltage(~5 V)lithium-ion batteries.Nevertheless,the elevated operation... LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)with a spinel crystal structure presents a compelling avenue towards the development of economic cobalt-free and high voltage(~5 V)lithium-ion batteries.Nevertheless,the elevated operational voltage of LNMO gives rise to pronounced interfacial interactions between the distorted surface lattices characterized by Jahn-Teller(J-T)distortions and the electrolyte constituents.Herein,a localized crystallized coherent LaNiO_(3) and surface passivated Li_(3)PO_(4) layer is deposited on LNMO via a one-step calcination process.As evidenced by transmission electron microscopy(TEM),time-of-flight secondary ion mass spectrometry(ToF-SIMS)and density functional theory(DFT)calculation,the epitaxial growth of LaNiO_(3) along the LNMO lattice can effectively stabilize the structure and inhibit irreversible phase transitions,and the Li_(3)PO_(4) surface coating can prevent the chemical reaction between HF and transition metals without sacrificing the electrochemical activity.In addition,the ionic conductive Li_(3)PO_(4) and atomic wetting inter-layer enables fast charge transfer transport property.Consequently,the LNMO material enabled by the lattice bonding and surface passivating features,demonstrates high performance at high current densities and good capacity retention during long-term test.The rational design of interface coherent engineering and surface coating layers of the LNMO cathode material offers a new perspective for the practical application of high-voltage lithium-ion batteries. 展开更多
关键词 high-voltage cathode interface-coherent surface passivating electrochemical performance
原文传递
Navigating the safe operation of high-voltage cathodes:Challenges and strategies
14
作者 Yue Sun Changjian Zuo Yi-Chun Lu 《Nano Research》 SCIE EI CSCD 2024年第10期8694-8705,共12页
Lithium-ion batteries play a crucial role in storing energy for renewable sources and electric vehicles,yet face challenges related to insufficient energy density.Elevating the working-voltage of cathodes is promising... Lithium-ion batteries play a crucial role in storing energy for renewable sources and electric vehicles,yet face challenges related to insufficient energy density.Elevating the working-voltage of cathodes is promising to boost the energy density of batteries by increasing both the output voltage and capacity of cathode,which however could compromise life cycle and safety.This review provides a comprehensive summary of essential factors governing pathways of cathode-induced thermal runaway,including electrolyte decomposition,phase transitions,and crosstalk-induced reactions.Electrode and electrolyte modifications aimed at mitigating parasitic reactions and preventing crosstalk were also discussed.The review concludes with insights into the future application of these strategies,providing a comprehensive perspective on the realization of high-energy and safe batteries. 展开更多
关键词 battery safety high-voltage cathode lithium-ion battery thermal runaway
原文传递
聚合物固态电解质–高电压正极界面稳定性研究进展 被引量:3
15
作者 廖睿熹 沈之川 +2 位作者 谢文浩 钟嘉炜 施志聪 《中国科学:化学》 CAS CSCD 北大核心 2022年第1期38-51,共14页
聚合物固态电解质相比于液态电解质表现出更良好的热稳定性,并且对比无机固态电解质具有机械性能好、耐候性好和易加工成型等特点,因此在下一代高能量密度储能装置中极具应用潜能.然而,固态电解质与正负极材料之间的界面稳定性问题阻碍... 聚合物固态电解质相比于液态电解质表现出更良好的热稳定性,并且对比无机固态电解质具有机械性能好、耐候性好和易加工成型等特点,因此在下一代高能量密度储能装置中极具应用潜能.然而,固态电解质与正负极材料之间的界面稳定性问题阻碍了其实际应用.本文总结了锂离子聚合物固态电解质的关键特性,讨论了聚合物固态电解质与高电压正极的普遍界面问题,包括界面接触不良与界面不稳定问题.分析了导致高电压富镍氧化物正极材料与聚合物固态电解质严重界面问题的主要因素,针对相关因素总结了缓解界面问题的有效策略,并展望了未来聚合物固态电解质与富镍层状氧化物的界面性能提升的研究方向,为基于聚合物固态电解质与高电压正极材料固态锂电池的研究提供参考. 展开更多
关键词 聚合物固态电解质 高电压正极材料 富镍正极材料 界面稳定性 界面接触
原文传递
5V高电压锂离子电池阴极材料研究进展 被引量:2
16
作者 刘竞雅 《电源世界》 2012年第1期53-57,共5页
先锂离子二次电池是在当今社会有着非常重要应用的能量储存一转换设备。随着电池材料性能的不断改进,锂电池也越来越可能取代石油等传统燃料而为汽车等交通工具提供动力。但是,要最终达到这一应用目标,要求电池材料有更高的能量密度,这... 先锂离子二次电池是在当今社会有着非常重要应用的能量储存一转换设备。随着电池材料性能的不断改进,锂电池也越来越可能取代石油等传统燃料而为汽车等交通工具提供动力。但是,要最终达到这一应用目标,要求电池材料有更高的能量密度,这也成为最近几年各国争先突破的研究热点。本文综述了5V高电压高能量密度锂离子二次电池阴极材料的最新研究进展,阐述了发展高电压高能量密度锂离子二次电池材料所面临的重要问题和挑战,并系统地总结了几种最有潜力的5V高电压阴极材料的研究进展。 展开更多
关键词 锂离子电池 高电压 高能量密度 阴极材料
原文传递
正极包覆与界面修饰:双策略改善聚氧化乙烯固态电解质对高电压正极稳定性 被引量:1
17
作者 谭淑雨 刘晓宁 +2 位作者 毕志杰 万勇 郭向欣 《无机材料学报》 SCIE EI CSCD 北大核心 2023年第12期1466-1474,I0010,I0011,共11页
聚氧化乙烯(PEO)基固体电解质具有成本低、对锂稳定、易于大规模生产等优点,是固态锂电池最有前途的固体电解质。然而,PEO对高压正极不稳定,严重限制了其在高能量密度领域的应用。本研究在LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)正极颗... 聚氧化乙烯(PEO)基固体电解质具有成本低、对锂稳定、易于大规模生产等优点,是固态锂电池最有前途的固体电解质。然而,PEO对高压正极不稳定,严重限制了其在高能量密度领域的应用。本研究在LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)正极颗粒上部分包覆环化聚丙烯腈(cPAN)纳米层作为电子导电层,在NCM/PEO界面上引入离子液体作为离子导电通道,用以提高PEO与高压NCM正极的相容性。其中,cPAN层不仅在物理上隔离了PEO电解质与NCM正极的直接接触,而且cPAN中具有非局域的sp^(2)π键,有助于正极内部的电子传输。同时,高离子电导率的离子液体的流动性较高,可以充分润湿正极侧界面,并在循环过程中分解为富LiF和Li_(3)N的CEI层,进一步限制PEO电解质的氧化分解。基于上述复合策略的固态NCM/Li电池可在0.1C(1C=0.18 A·g^(-1)),4.30 V截止电压下稳定循环100次,且容量保持率可达85.3%。本研究通过表面包覆和界面修饰,为提高PEO基电解质对高压正极的稳定性提供了可行方案。 展开更多
关键词 聚氧化乙烯 环化 高电压正极 界面工程 固态锂电池
下载PDF
Durable semi-crystalline interphase engineering to stabilize high voltage Ni-rich cathode in dilute ether electrolyte
18
作者 Zhuangzhuang Cui Shunqiang Chen +7 位作者 Qingshun Nian Yecheng Li Yawei Chen Bing-Qing Xiong Zihong Wang Zixu He Shuhong Jiao Xiaodi Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期110-117,共8页
Ethers are promising electrolyte solvents for secondary Li metal batteries because of their excellent reduction stability.However,their oxidation stability has been mostly relying on the high concentration approach,an... Ethers are promising electrolyte solvents for secondary Li metal batteries because of their excellent reduction stability.However,their oxidation stability has been mostly relying on the high concentration approach,and limited progress has been made on building effective interphase to protect the cathode from the corrosion of the electrolyte.In this work,we construct a semi-crystalline interfacial layer on the surface of Li(Ni_(0.8)Co_(0.1)Mn_(0.1))O_(2)cathode that can achieve improved electrochemical stability in the highly corrosive chemical environment formed by the decomposition of ether molecules.Different from traditional brittle crystalline interphases,the optimized semi-crystalline layer with low modulus and high ionic conductivity can effectively relieve electrode strain and maintain the integrity of the interface layer.Due to this design,the continuous oxidation decomposition of ether-based electrolytes could be significantly suppressed and the battery shows outstanding cycling stability(84%capacity retention after 300 cycles).This article provides a solution to address the oxidation instability issue of ether-based electrolytes. 展开更多
关键词 cathode/electrolyte interphase Semi-crystalline Ether electrolyte high-voltage cathode Li-metal batteries
下载PDF
A cerium-doped NASICON chemically coupled poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries 被引量:1
19
作者 Tao Huang Wei Xiong +13 位作者 Xue Ye Zhencheng Huang Yuqing Feng Jianneng Liang Shenghua Ye Jishou Piao Xinzhong Wang Yongliang Li Xiangzhong Ren Chao Chen Shaoluan Huang Xiaoping Ouyang Qianling Zhang Jianhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期311-321,I0007,共12页
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop... The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively. 展开更多
关键词 Quasi-solid-state batteries Composite polymer electrolytes high conductivity high-voltage cathode Oxygen vacancies
下载PDF
Sodium-based dual-ion batteries via coupling high-capacity selenium/graphene anode with high-voltage graphite cathode 被引量:1
20
作者 Xiankun Hou Wenhao Li +5 位作者 Yingying Wang Shaofang Li Yunfeng Meng Haiyue Yu Baokuan Chen Xinglong Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2314-2318,共5页
Dual ion batteries(DIBs) exhibit broad application prospects in the field of electrical energy storage(EES)devices with excellent properties,such as high voltage,high energy density,and low cost.In the graphitebased D... Dual ion batteries(DIBs) exhibit broad application prospects in the field of electrical energy storage(EES)devices with excellent properties,such as high voltage,high energy density,and low cost.In the graphitebased DIBs,high voltage is needed to store enough anions with the formation of anion intercalation compound XCn(X=AlCl4-,PF6-,TFSI-,etc.).Hence,it is difficult for graphite-based DIBs to match proper anodes and electrolytes.Here,an Se/graphene composite is prepared via a convenient method,and assembled into a dual-ion full battery(DIFB) as anode with graphite cathode and 1 mol/L NaPF6 in EC:EMC(1:1,v:v).This DIFB has achieved a high discharge capacity of 75.9 mAh/g and high medium output voltage of 3.5 V at 0.1 A/g.Actually,the suitable anode materials,such as the present Se/graphene composite,are extremely important for the development and application of graphite-based DIBs.This study is enlightening for the design of future low-cost EES devices including graphite-based DIBs. 展开更多
关键词 Dual ion batteries high-capacity anode Se/grapheme high-voltage cathode GRAPHITE
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部