In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization...In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.展开更多
基金Supported by National Natural Science Foundation of China (60774010), Program for New Century Excellent Talents in University of China (NCET-05-0607), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), and Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
文摘适应州反馈的稳定为在的高顺序的随机的非线性的系统的一个类被调查函数 fi 的上面的界限(?? 铄吗??
基金Program for New Century Excellent Talents in University of China (NCET-05-0607)National Natural Science Fou-ndation of China (No.60774010)Project for Fundamental Research of Natural Sciences in Universities of Jingsu Province (No.07KJB510114)
文摘In this paper, for a class of high-order stochastic nonlinear systems with zero dynamics which are neither necessarily feedback linearizable nor affine in the control input, the problem of state feedback stabilization is investigated for the first time. Under some weaker assumptions, a smooth state feedback controller is designed, which ensures that the closed-loop system has an almost surely unique solution on [0,∞), the equilibrium at the origin of the closed-loop system is globally asymptotically stable in probability, and all the states can be regulated to the origin almost surely. A simulation example demonstrates the control scheme.