期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种多分辨率高维图像特征匹配算法 被引量:12
1
作者 崔江涛 刘卫光 周利华 《光子学报》 EI CAS CSCD 北大核心 2005年第1期138-141,共4页
通过对图像进行特征提取和变换 ,图像的相似性匹配可以转换为高维向量空间内的点匹配 为了解决高维数据的维数灾难问题 ,提出一种基于多分辨率数据结构的向量近似方法 从低分辨率开始计算距离下限 ,如果距离下限大于目前结果集中的最... 通过对图像进行特征提取和变换 ,图像的相似性匹配可以转换为高维向量空间内的点匹配 为了解决高维数据的维数灾难问题 ,提出一种基于多分辨率数据结构的向量近似方法 从低分辨率开始计算距离下限 ,如果距离下限大于目前结果集中的最大距离 ,则不需要在高分辨率上计算其距离而将其排除掉 ,从而降低了向量近似方法的运算复杂度 提出应用此方法的近邻搜索算法并运用到图像数据库的特征匹配中 ,实验证明 展开更多
关键词 匹配算法 高维数据 多分辨率 点匹配 图像数据库 特征匹配 特征提取 近似方法 实验证明 下限
下载PDF
A Sequence Image Matching Method Based on Improved High-Dimensional Combined Features 被引量:2
2
作者 Leng Xuefei Gong Zhe +1 位作者 Fu Runzhe Liu Yang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第5期820-828,共9页
Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim... Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes. 展开更多
关键词 SEQUENCE image MATCHING navigation DELAUNAY TRIANGULATION high-dimensional combined feature k-nearest NEIGHBOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部