In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. He...In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.展开更多
Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1....Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface.展开更多
基金supported by the "One Hundred Talents" Program of the Chinese Academy of Sciences (KSCX2‐YW‐G‐067)the National Science Foundation grant (Y4643A1001)
文摘In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.
文摘Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface.