针对高轨卫星连线干涉测量(Connected Element Interferometry,CEI)信号的高精度频率估计这一难题,建立了CEI中的正弦信号频率估计模型。设计了基于深度学习框架的CEI信号频率估计算法,将算法划分为基于前馈深度神经网络的频率表征模块...针对高轨卫星连线干涉测量(Connected Element Interferometry,CEI)信号的高精度频率估计这一难题,建立了CEI中的正弦信号频率估计模型。设计了基于深度学习框架的CEI信号频率估计算法,将算法划分为基于前馈深度神经网络的频率表征模块和基于卷积神经网络的频率计算及估计模块,在此基础上设计了各模块的具体结构和学习训练流程。对于算法的核心模块进行了仿真实验验证,并将所提算法与前人的相关算法进行了比较与分析,证明了该算法的有效性、稳定性和优越性。展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite comm...With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite communication provides a large coverage area suitable for a variety of services and is less affected by geographical factors;moreover,the costs are independent of the communication distance.This study investigates information acquisition technology for small hydropower stations in remote areas using high-and low-orbit satellites.The information collection needs of small hydropower stations in remote areas are analyzed,and an information acquisition system is designed using high-and low-orbit satellites.For network security protection,network anomaly detection technology based on a support vector machine algorithm is proposed.The effectiveness of information collection was evaluated and verified for small hydropower plants in remote areas.The system provides technical support for“full coverage,full collection,and full monitoring”of the measurement automation information acquisition system.展开更多
文摘针对高轨卫星连线干涉测量(Connected Element Interferometry,CEI)信号的高精度频率估计这一难题,建立了CEI中的正弦信号频率估计模型。设计了基于深度学习框架的CEI信号频率估计算法,将算法划分为基于前馈深度神经网络的频率表征模块和基于卷积神经网络的频率计算及估计模块,在此基础上设计了各模块的具体结构和学习训练流程。对于算法的核心模块进行了仿真实验验证,并将所提算法与前人的相关算法进行了比较与分析,证明了该算法的有效性、稳定性和优越性。
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.
基金funded by the Guangdong Power Grid Co.,Ltd.Technology Project(GDKJXM20180019).
文摘With a lack of coverage in private and public power communication networks,especially for collection of information from hydropower stations in remote areas,communication coverage is a significant issue.Satellite communication provides a large coverage area suitable for a variety of services and is less affected by geographical factors;moreover,the costs are independent of the communication distance.This study investigates information acquisition technology for small hydropower stations in remote areas using high-and low-orbit satellites.The information collection needs of small hydropower stations in remote areas are analyzed,and an information acquisition system is designed using high-and low-orbit satellites.For network security protection,network anomaly detection technology based on a support vector machine algorithm is proposed.The effectiveness of information collection was evaluated and verified for small hydropower plants in remote areas.The system provides technical support for“full coverage,full collection,and full monitoring”of the measurement automation information acquisition system.