期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
MODIS亚洲高山区积雪面积比例制图
1
作者
高伟强
郝晓华
+4 位作者
和栋材
孙兴亮
李弘毅
任鸿瑞
赵琴
《遥感学报》
EI
CSCD
北大核心
2024年第9期2223-2239,共17页
积雪面积比例FSC(Fractional Snow Cover)能在亚像元尺度上定量描述积雪的覆盖程度,相比二值积雪更适合反映复杂山区积雪的分布情况,是山区融雪径流模拟,气候变化预测的重要输入参数。本研究在亚洲高山区HMA(High Mountain Asia)基于分...
积雪面积比例FSC(Fractional Snow Cover)能在亚像元尺度上定量描述积雪的覆盖程度,相比二值积雪更适合反映复杂山区积雪的分布情况,是山区融雪径流模拟,气候变化预测的重要输入参数。本研究在亚洲高山区HMA(High Mountain Asia)基于分地类特征选择的多元自适应回归样条MARS(Multivariate Adaptive Regression Splines)模型LC-MARS发展了MODIS FSC反演算法,并制备了亚洲高山区FSC产品。以Landsat 8提取的FSC为参考真值验证LC-MARS模型反演FSC精度,对比相同训练样本下LC-MARS模型与线性回归模型反演FSC精度,比较LC-MARS模型制备的FSC与MOD10A1、SnowCCI在亚洲高山区的精度表现。结果表明:(1) LC-MARS模型反演的FSC总Accuracy、Recall分别为93.4%、97.1%,总体RMSE为0.148,MAE为0.093,总体精度较高。(2)相同训练样本下LC-MARS模型在林区、植被和裸地反演FSC精度均高于线性回归模型,表明LC-MARS模型更适用于山林区FSC反演。(3) MOD10A1总体RMSE为0.178,MAE为0.096;SnowCCI总体RMSE为0.247,MAE为0.131,LC-MARS制备的FSC精度均高于MOD10A1、SnowCCI,表明由LC-MARS反演的FSC具有一定的应用价值。总体而言,LC-MARS模型可以拟合高维非线性关系,显著提高山林区FSC的反演精度且模型运算效率高,适用于制备大尺度长时间序列的FSC产品。本研究基于LC-MARS模型制备了2000年—2021年亚洲高山区逐日MODIS FSC产品,为亚洲高山区气候变化、水文水资源研究提供重要的数据支撑。
展开更多
关键词
遥感
亚洲高山区
积雪面积比例
MODIS
MARS
地形校正
原文传递
题名
MODIS亚洲高山区积雪面积比例制图
1
作者
高伟强
郝晓华
和栋材
孙兴亮
李弘毅
任鸿瑞
赵琴
机构
太原理工大学矿业工程学院
中国科学院西北生态环境资源研究院
兰州大学资源环境学院
出处
《遥感学报》
EI
CSCD
北大核心
2024年第9期2223-2239,共17页
基金
国家自然科学基金(编号:U22A20564,41971325)
国家重点研发计划(编号:2022YFF0711702-05)。
文摘
积雪面积比例FSC(Fractional Snow Cover)能在亚像元尺度上定量描述积雪的覆盖程度,相比二值积雪更适合反映复杂山区积雪的分布情况,是山区融雪径流模拟,气候变化预测的重要输入参数。本研究在亚洲高山区HMA(High Mountain Asia)基于分地类特征选择的多元自适应回归样条MARS(Multivariate Adaptive Regression Splines)模型LC-MARS发展了MODIS FSC反演算法,并制备了亚洲高山区FSC产品。以Landsat 8提取的FSC为参考真值验证LC-MARS模型反演FSC精度,对比相同训练样本下LC-MARS模型与线性回归模型反演FSC精度,比较LC-MARS模型制备的FSC与MOD10A1、SnowCCI在亚洲高山区的精度表现。结果表明:(1) LC-MARS模型反演的FSC总Accuracy、Recall分别为93.4%、97.1%,总体RMSE为0.148,MAE为0.093,总体精度较高。(2)相同训练样本下LC-MARS模型在林区、植被和裸地反演FSC精度均高于线性回归模型,表明LC-MARS模型更适用于山林区FSC反演。(3) MOD10A1总体RMSE为0.178,MAE为0.096;SnowCCI总体RMSE为0.247,MAE为0.131,LC-MARS制备的FSC精度均高于MOD10A1、SnowCCI,表明由LC-MARS反演的FSC具有一定的应用价值。总体而言,LC-MARS模型可以拟合高维非线性关系,显著提高山林区FSC的反演精度且模型运算效率高,适用于制备大尺度长时间序列的FSC产品。本研究基于LC-MARS模型制备了2000年—2021年亚洲高山区逐日MODIS FSC产品,为亚洲高山区气候变化、水文水资源研究提供重要的数据支撑。
关键词
遥感
亚洲高山区
积雪面积比例
MODIS
MARS
地形校正
Keywords
remote
sensing
high
mountain
asia
(
hma
)
fractional
snow
cover
MODIS
MARS
terrain
correction
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
P2 [自动化与计算机技术—控制科学与工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
MODIS亚洲高山区积雪面积比例制图
高伟强
郝晓华
和栋材
孙兴亮
李弘毅
任鸿瑞
赵琴
《遥感学报》
EI
CSCD
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部