A new approach to solving the observation of enhanced neutron production in high-energy heavy ion induced reactions in thick targets is presented. Two different reaction mechanisms in these interactions are considered...A new approach to solving the observation of enhanced neutron production in high-energy heavy ion induced reactions in thick targets is presented. Two different reaction mechanisms in these interactions are considered: 1) Limited fragmentation of the projectile, called SPALLATION;2) Complete nuclear fragmentation of the projectile fragment into individual relativistic hadrons only, referred to as “BURST”. The abundance of this second path increases with the charge and energy of the projectile and may be responsible for enhanced neutron production observed with radiochemical methods in 44 GeV 12C and 72 GeV 40Ar irradiations. Interactions of 72 GeV 22Ne in nuclear emulsions show that SPALLATION and BURST have strongly different interaction signatures, and also that the rate of BURSTS increases from (26 ± 3)% of all interactions in the 1st generation to (78 ± 6)% in the 2nd generation. Further experimental signatures of BURSTS will be described;however, no model based on physics concepts can be presented. This effect may have practical consequences for neutron safety considerations in the construction of advanced heavy ion accelerators.展开更多
A new concept is introduced for the classification of “unresolved problems” in the understanding of interactions in thick targets irradiated with relativistic ions: The centre-of-mass energy per nucleon of a hypothe...A new concept is introduced for the classification of “unresolved problems” in the understanding of interactions in thick targets irradiated with relativistic ions: The centre-of-mass energy per nucleon of a hypothetical compound nucleus from a primary interaction, ECM/u, is calculated and correlated with experimental observations in thick target irradia- tions. One observes in various reactions of relativistic primary ions with thick targets that there appears to be a thresh- old energy for reactions leading to “unresolved problems” which lies around ECM/u ~ 150 MeV. All “unresolved prob- lems” are exclusively observed above this threshold, whereas below this threshold no “unresolved problems” are found. A similar threshold at 158 ± 3 MeV exists for massive pion production in nuclear interactions. Hagedorn had proposed this threshold decades ago and it is known as the Hagedorn limit. In this paper we will only mention, but not elaborate on Hagedorn’s theoretical concept any further. Some considerations will be presented and further studies in this field are suggested.展开更多
An enhanced neutron production and an enhanced nuclear destruction due to secondary fragments have been observed in very thick targets irradiated with high energy ions. This enhancement is beyond theoretical calculati...An enhanced neutron production and an enhanced nuclear destruction due to secondary fragments have been observed in very thick targets irradiated with high energy ions. This enhancement is beyond theoretical calculations and it is an unresolved problem. It is observed only when primary ion interactions exceed an energy threshold (ECM/u ≈ 150 MeV). Investigations using nuclear emulsions for very high-energy nuclear reactions suggest that two distinctly different classes of relativistic projectile-like fragments are emitted in primary interactions: a “cool” channel with a temperature of (T(p)cool ≈ 10 MeV), and a “hot” channel with (T(p)hot ≈ 40 MeV. This second reaction class may induce the above mentioned enhanced reactions of secondary fragments, thus being responsible for unresolved problems. This assumption should be studied in further experiments. Nuclear interactions of secondary particles in thick targets are of interest, in particular in view of radiation protection needs for high energy and high intensity heavy ion accelerators. Many basic ideas of this paper go back to the late Professor E. Schopper (Frankfurt).展开更多
文摘A new approach to solving the observation of enhanced neutron production in high-energy heavy ion induced reactions in thick targets is presented. Two different reaction mechanisms in these interactions are considered: 1) Limited fragmentation of the projectile, called SPALLATION;2) Complete nuclear fragmentation of the projectile fragment into individual relativistic hadrons only, referred to as “BURST”. The abundance of this second path increases with the charge and energy of the projectile and may be responsible for enhanced neutron production observed with radiochemical methods in 44 GeV 12C and 72 GeV 40Ar irradiations. Interactions of 72 GeV 22Ne in nuclear emulsions show that SPALLATION and BURST have strongly different interaction signatures, and also that the rate of BURSTS increases from (26 ± 3)% of all interactions in the 1st generation to (78 ± 6)% in the 2nd generation. Further experimental signatures of BURSTS will be described;however, no model based on physics concepts can be presented. This effect may have practical consequences for neutron safety considerations in the construction of advanced heavy ion accelerators.
文摘A new concept is introduced for the classification of “unresolved problems” in the understanding of interactions in thick targets irradiated with relativistic ions: The centre-of-mass energy per nucleon of a hypothetical compound nucleus from a primary interaction, ECM/u, is calculated and correlated with experimental observations in thick target irradia- tions. One observes in various reactions of relativistic primary ions with thick targets that there appears to be a thresh- old energy for reactions leading to “unresolved problems” which lies around ECM/u ~ 150 MeV. All “unresolved prob- lems” are exclusively observed above this threshold, whereas below this threshold no “unresolved problems” are found. A similar threshold at 158 ± 3 MeV exists for massive pion production in nuclear interactions. Hagedorn had proposed this threshold decades ago and it is known as the Hagedorn limit. In this paper we will only mention, but not elaborate on Hagedorn’s theoretical concept any further. Some considerations will be presented and further studies in this field are suggested.
文摘An enhanced neutron production and an enhanced nuclear destruction due to secondary fragments have been observed in very thick targets irradiated with high energy ions. This enhancement is beyond theoretical calculations and it is an unresolved problem. It is observed only when primary ion interactions exceed an energy threshold (ECM/u ≈ 150 MeV). Investigations using nuclear emulsions for very high-energy nuclear reactions suggest that two distinctly different classes of relativistic projectile-like fragments are emitted in primary interactions: a “cool” channel with a temperature of (T(p)cool ≈ 10 MeV), and a “hot” channel with (T(p)hot ≈ 40 MeV. This second reaction class may induce the above mentioned enhanced reactions of secondary fragments, thus being responsible for unresolved problems. This assumption should be studied in further experiments. Nuclear interactions of secondary particles in thick targets are of interest, in particular in view of radiation protection needs for high energy and high intensity heavy ion accelerators. Many basic ideas of this paper go back to the late Professor E. Schopper (Frankfurt).