期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高维混合效应模型的双正则化分位回归方法研究 被引量:5
1
作者 罗幼喜 田茂再 李翰芳 《统计研究》 CSSCI 北大核心 2017年第7期94-103,共10页
针对高维混合效应模型,本文提出了一种双正则化分位回归方法。通过对随机和固定效应系数同时实施L1正则化惩罚,一方面能够对重要解释变量进行挑选,另一方面能够消除个体随机波动带来的偏差。求解参数估计的交替迭代算法不仅破解了要同... 针对高维混合效应模型,本文提出了一种双正则化分位回归方法。通过对随机和固定效应系数同时实施L1正则化惩罚,一方面能够对重要解释变量进行挑选,另一方面能够消除个体随机波动带来的偏差。求解参数估计的交替迭代算法不仅破解了要同时确定两个调整参数的难题,而且算法速度快。模拟结果也表明该方法不仅对误差类型有很强的抗干扰能力,同时在模型有不同稀疏程度时均表现良好,尤其是对于解释变量多于样本的高维情况。为了方便在实际问题中选择最优正则化参数,本文还对两种参数选取标准进行了比较研究。最后利用新方法对一个教育方面的数据进行了实证演示,找出了在各个分位点处对学生成绩有影响的重要因素。 展开更多
关键词 高维混合效应模型 双正则化 交替迭代法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部