The aim of this work is to demonstrate that interphase power regulators (I</span></span><span style="white-space:normal;"><span style="font-family:"">PR) bring new...The aim of this work is to demonstrate that interphase power regulators (I</span></span><span style="white-space:normal;"><span style="font-family:"">PR) bring new and interesting ultra-solutions that complement those already taken into account by the FACTS (Flexible Alternative Transmission System) in the resolution of the problems related to the power flow in the AC transmission networks. In order to facilitate the understanding of this work, a comparative study of the performances of the two technologies between the UPFC (Unified Power Flow Controller) and RPI was carried out and at the end of which we were able to highlight the preponderance of RPI compared to the UPFC in the bypassing of the short-circuit fault insofar as the latter allows, in particular, an increase in the transformation capacity without an increase in the level of the short-circuit. The decoupled watt-var method has been used to control the UPFC while the RPI is controlled by phase shift. The simulation results are obtained in the Matlab Simulink environment and show the flexibility of the RPI compared to the UPFC in limiting strong contingencies.展开更多
Every year, transmission congestion costs billions ofdollars for electricity customers. This clearly identifies the criticalneed for more transmission capacity and also poses big challengesfor power grid reliability i...Every year, transmission congestion costs billions ofdollars for electricity customers. This clearly identifies the criticalneed for more transmission capacity and also poses big challengesfor power grid reliability in stressed conditions due to heavyloading and in uncertain situations due to variable renewableresources and responsive smart loads. However, it becomesincreasingly difficult to build new transmission lines, whichtypically involve both economic and environmental constraints.In this paper, advanced computing techniques are developedto enable a non-wire solution that realizes unused transfercapabilities of existing transmission facilities. An integratedsoftware prototype powered by high-performance computing(HPC) is developed to calculate ratings of key transmission pathsin real time for relieving transmission congestion and facilitatingrenewable integration, while complying with the North AmericanElectric Reliability Corporation (NERC) standards on assessingtotal transfer capabilities. The innovative algorithms include: (1)massive contingency analysis enabled by dynamic load balancing,(2) parallel transient simulation to speed up single dynamicsimulation, (3) a non-iterative method for calculating voltagesecurity boundary and (4) an integrated package consideringall NERC required limits. This tool has been tested on realisticpower system models in the Western Interconnection of NorthAmerica and demonstrates satisfactory computational speedusing parallel computers. Various benefits of real-time path ratingare investigated at Bonneville Power Administration using realtime EMS snapshots, demonstrating a significant increase in pathlimits. These technologies would change the traditional goals ofpath rating studies, fundamentally transforming how the grid isoperated, and maximizing the utilization of national transmissionassets, as well as facilitating integration of renewable energy andsmart loads.展开更多
综述了2008年IEEE PES General Meeting和2008年CIGRE大电网会议主要内容。内容包括:CIGRE关于新一代能量管理系统/市场管理系统(energy management system/market management system,EMS/MMS)结构设计;EMS的公用数据接口标准化规范的...综述了2008年IEEE PES General Meeting和2008年CIGRE大电网会议主要内容。内容包括:CIGRE关于新一代能量管理系统/市场管理系统(energy management system/market management system,EMS/MMS)结构设计;EMS的公用数据接口标准化规范的信息结构;高性能计算(并行计算)在控制中心的应用。这些内容可能代表了当代电力系统控制中心新技术的发展方向,可为我国从事EMS/MMS研究和实际工作的人员提供参考。展开更多
文摘The aim of this work is to demonstrate that interphase power regulators (I</span></span><span style="white-space:normal;"><span style="font-family:"">PR) bring new and interesting ultra-solutions that complement those already taken into account by the FACTS (Flexible Alternative Transmission System) in the resolution of the problems related to the power flow in the AC transmission networks. In order to facilitate the understanding of this work, a comparative study of the performances of the two technologies between the UPFC (Unified Power Flow Controller) and RPI was carried out and at the end of which we were able to highlight the preponderance of RPI compared to the UPFC in the bypassing of the short-circuit fault insofar as the latter allows, in particular, an increase in the transformation capacity without an increase in the level of the short-circuit. The decoupled watt-var method has been used to control the UPFC while the RPI is controlled by phase shift. The simulation results are obtained in the Matlab Simulink environment and show the flexibility of the RPI compared to the UPFC in limiting strong contingencies.
基金supported by the U.S.Department of Energy,Advanced Research Projects Agency-Energy(ARPAE)and Office of Electricity Delivery and Energy Reliability through its Advanced Grid Modeling Program.Pacific Northwest National Laboratory(PNNL)is operated by Battelle for the DOE under Contract DE-AC05-76RL01830.
文摘Every year, transmission congestion costs billions ofdollars for electricity customers. This clearly identifies the criticalneed for more transmission capacity and also poses big challengesfor power grid reliability in stressed conditions due to heavyloading and in uncertain situations due to variable renewableresources and responsive smart loads. However, it becomesincreasingly difficult to build new transmission lines, whichtypically involve both economic and environmental constraints.In this paper, advanced computing techniques are developedto enable a non-wire solution that realizes unused transfercapabilities of existing transmission facilities. An integratedsoftware prototype powered by high-performance computing(HPC) is developed to calculate ratings of key transmission pathsin real time for relieving transmission congestion and facilitatingrenewable integration, while complying with the North AmericanElectric Reliability Corporation (NERC) standards on assessingtotal transfer capabilities. The innovative algorithms include: (1)massive contingency analysis enabled by dynamic load balancing,(2) parallel transient simulation to speed up single dynamicsimulation, (3) a non-iterative method for calculating voltagesecurity boundary and (4) an integrated package consideringall NERC required limits. This tool has been tested on realisticpower system models in the Western Interconnection of NorthAmerica and demonstrates satisfactory computational speedusing parallel computers. Various benefits of real-time path ratingare investigated at Bonneville Power Administration using realtime EMS snapshots, demonstrating a significant increase in pathlimits. These technologies would change the traditional goals ofpath rating studies, fundamentally transforming how the grid isoperated, and maximizing the utilization of national transmissionassets, as well as facilitating integration of renewable energy andsmart loads.
文摘综述了2008年IEEE PES General Meeting和2008年CIGRE大电网会议主要内容。内容包括:CIGRE关于新一代能量管理系统/市场管理系统(energy management system/market management system,EMS/MMS)结构设计;EMS的公用数据接口标准化规范的信息结构;高性能计算(并行计算)在控制中心的应用。这些内容可能代表了当代电力系统控制中心新技术的发展方向,可为我国从事EMS/MMS研究和实际工作的人员提供参考。