针对倒装型功率发光二极管器件,描述了功率LED器件的热阻特性,对不同芯片键合材料的功率LED热阻进行了分析,并运用AN SY S软件对3类典型芯片键合材料封装的功率LED热特性进行了仿真。仿真结果表明:采用功率芯片键合材料提高了功率LED的...针对倒装型功率发光二极管器件,描述了功率LED器件的热阻特性,对不同芯片键合材料的功率LED热阻进行了分析,并运用AN SY S软件对3类典型芯片键合材料封装的功率LED热特性进行了仿真。仿真结果表明:采用功率芯片键合材料提高了功率LED的散热特性、降低器件PN结温,而采用普通热沉粘接胶作为芯片键合材料的功率LED的PN结温则较高,因此普通热沉粘接胶不适合用作功率LED的芯片键合材料。展开更多
An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is ...An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is used for heat exchange between LED chips and the present system. To check the feasibility of the present cooling system, the preliminary experiments are conducted without the intention of parameter optimization on micro jet device and other system components. The experiment results demonstrate that the present cooling system can achieve good cooling effect. For a 16.4 W input power, the surface temperature of 2 by 2 LED array is just 44.2°C after 10 min operation, much lower than 112.2°C, which is measured without any active cooling techniques at the same input power. Experimental results also show that increase in the flow rate of micro pump will greatly enhance the heat transfer efficiency, however, it will increase power consumption. Therefore, it should have a trade-off between the flow rate and the power consumption. To find a suitable numerical model for next step parameter optimization, numerical simulation on the above experiment system is also conducted in this paper. The comparison between numerical and experiment results is presented. For two by two chip array, when the input power is 4 W, the surface average temperature achieved by a steady numerical simulation is 34°C, which is close to the value of 32.8°C obtained by surface experiment test. The simulation results also demonstrate that the micro jet device in the present cooling system needs parameter optimization.展开更多
To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature...To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.展开更多
文摘针对倒装型功率发光二极管器件,描述了功率LED器件的热阻特性,对不同芯片键合材料的功率LED热阻进行了分析,并运用AN SY S软件对3类典型芯片键合材料封装的功率LED热特性进行了仿真。仿真结果表明:采用功率芯片键合材料提高了功率LED的散热特性、降低器件PN结温,而采用普通热沉粘接胶作为芯片键合材料的功率LED的PN结温则较高,因此普通热沉粘接胶不适合用作功率LED的芯片键合材料。
基金Supported by the Key Technology R&D Program of Hubei Province, China (Grant No. 2006AA103A04)
文摘An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is used for heat exchange between LED chips and the present system. To check the feasibility of the present cooling system, the preliminary experiments are conducted without the intention of parameter optimization on micro jet device and other system components. The experiment results demonstrate that the present cooling system can achieve good cooling effect. For a 16.4 W input power, the surface temperature of 2 by 2 LED array is just 44.2°C after 10 min operation, much lower than 112.2°C, which is measured without any active cooling techniques at the same input power. Experimental results also show that increase in the flow rate of micro pump will greatly enhance the heat transfer efficiency, however, it will increase power consumption. Therefore, it should have a trade-off between the flow rate and the power consumption. To find a suitable numerical model for next step parameter optimization, numerical simulation on the above experiment system is also conducted in this paper. The comparison between numerical and experiment results is presented. For two by two chip array, when the input power is 4 W, the surface average temperature achieved by a steady numerical simulation is 34°C, which is close to the value of 32.8°C obtained by surface experiment test. The simulation results also demonstrate that the micro jet device in the present cooling system needs parameter optimization.
文摘To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.