Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface...Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface properties, gate-oxide leakage and device reliability is investigated. Among the surface pretreatments in NH3, NO, N2O and TCE ambients, the TCE pretreatment gives the least interlayer growths the lowest interface-state density, the smallest gate leakage and the highest reliability. All these improvements should be ascribed to the passivation effects of Cl2 and HC1 on the structural defects in the interlayer and at the interface, and also their gettering effects on the ion contamination in the gate dielectric.展开更多
利用脉冲激光沉积技术在Sr Ti O_3表面导电层上方制备非晶Hf O_2栅介质薄膜,通过磁控溅射技术在非晶Hf O_2栅介质薄膜上方制备直径为100μm的圆形Pt电极,研究了变温条件下Pt/Hf O_2/Sr Ti O_3的漏电流I-V特性,分析了非晶Hf O_2栅介质层...利用脉冲激光沉积技术在Sr Ti O_3表面导电层上方制备非晶Hf O_2栅介质薄膜,通过磁控溅射技术在非晶Hf O_2栅介质薄膜上方制备直径为100μm的圆形Pt电极,研究了变温条件下Pt/Hf O_2/Sr Ti O_3的漏电流I-V特性,分析了非晶Hf O_2栅介质层的漏电机制,如空间电荷限制电流机制、Fowler-Nordheim导电机制、Pool-Frenkel发射机制、肖特基发射机制。研究结果表明在低压段(<0.18 V)为欧姆导电;在高压段(>0.5 V)为Pool-Frenkel发射机制。展开更多
AHfO2/n–In Al As MOS-capacitor has the advantage of reducing the serious gate leakage current when it is adopted in In As/Al Sb HEMT instead of the conventional Schottky-gate. In this paper, three kinds of Hf O2/n–I...AHfO2/n–In Al As MOS-capacitor has the advantage of reducing the serious gate leakage current when it is adopted in In As/Al Sb HEMT instead of the conventional Schottky-gate. In this paper, three kinds of Hf O2/n–InAlAs MOS-capacitor samples with different Hf O2 thickness values of 6, 8, and 10 nm are fabricated and used to investigate the interfacial and electrical characteristics. As the thickness is increased, the equivalent dielectric constant ε ox of Hf O2 layer is enhanced and the In AlAsHfO2 interface trap density Ditis reduced, leading to an effective reduction of the leakage current. It is found that the Hf O2 thickness of 10 nm is a suitable value to satisfy the demands of most applications of a HfO2/n–InAlAs MOS-capacitor, with a sufficiently low leakage current compromised with the threshold voltage.展开更多
文摘随着微电子技术的不断发展,MOSFET 的特征尺寸已缩小至100nm 以下,SiO_2作为栅介质材料已不能满足技术发展的需求,因此必须寻求一种新型高 K 的介质材料来取代 SiO_2。当今普遍认为 Hf 基栅介质材料是最有希望取代 SiO_2而成为下一代 MOSFET 的栅介质材料。综述了高 K 栅介质材料的意义、Hf 基高 K 栅介质材料的最新研究进展和 Hf 基高 K 栅介质材料在克服自身缺陷时使用的一些技术;介绍了一款由 Hf 基高 K 介质材料作为栅绝缘层制作的 MOSFET。
基金Project supported by the National Natural Science Foundation of China (Grant No 60376019).
文摘Trichloroethylene (TCE) pretreatment of Si surface prior to HfO2 deposition is employed to fabricate HfO2 gatedielectric MOS capacitors. Influence of this processing procedure on interlayer growth, HfO2/Si interface properties, gate-oxide leakage and device reliability is investigated. Among the surface pretreatments in NH3, NO, N2O and TCE ambients, the TCE pretreatment gives the least interlayer growths the lowest interface-state density, the smallest gate leakage and the highest reliability. All these improvements should be ascribed to the passivation effects of Cl2 and HC1 on the structural defects in the interlayer and at the interface, and also their gettering effects on the ion contamination in the gate dielectric.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB327505)the Advance Research Foundation of China(Grant No.914xxx803-051xxx111)
文摘AHfO2/n–In Al As MOS-capacitor has the advantage of reducing the serious gate leakage current when it is adopted in In As/Al Sb HEMT instead of the conventional Schottky-gate. In this paper, three kinds of Hf O2/n–InAlAs MOS-capacitor samples with different Hf O2 thickness values of 6, 8, and 10 nm are fabricated and used to investigate the interfacial and electrical characteristics. As the thickness is increased, the equivalent dielectric constant ε ox of Hf O2 layer is enhanced and the In AlAsHfO2 interface trap density Ditis reduced, leading to an effective reduction of the leakage current. It is found that the Hf O2 thickness of 10 nm is a suitable value to satisfy the demands of most applications of a HfO2/n–InAlAs MOS-capacitor, with a sufficiently low leakage current compromised with the threshold voltage.