Purpose: To compare the sensitivity of Hexosaminidase A (HexA) enzyme-based testing to gene sequencing for carrier detection in non-Jewish individuals. Methods: Blood samples were obtained from parents and relatives o...Purpose: To compare the sensitivity of Hexosaminidase A (HexA) enzyme-based testing to gene sequencing for carrier detection in non-Jewish individuals. Methods: Blood samples were obtained from parents and relatives of affected patients at an annual Tay-Sachs and Allied Diseases Foundation meeting. A family history was taken for each individual. Samples were analyzed for leukocyte HexA activity, serum HexA activity and subjected to extensive gene sequencing. The results from these analyses were combined with our previously published data describing 34 obligate Tay-Sachs disease (TSD) carriers. Results: Twelve additional TSD carriers were detected in this study. Gene sequencing successfully identified all 12 carriers whereas enzyme analysis identified 11 of 12 carriers. This individual is a carrier of the B1 variant that is known to cause false negative results with enzyme testing. Combined data from 46 non-Jewish TSD carriers revealed that gene sequencing had a higher sensitivity rate than HexA enzyme-based testing (94% versus 87%) in non-Jewish TSD carriers. In our series, approximately 4% of non-Jewish TSD carriers have this mutation. Conclusions: HexA gene sequencing provides a higher sensitivity for TSD carrier detection than HexA based enzyme analysis in non-Jewish patients primarily due to the presence of individuals with the B1 variant.展开更多
目的:建立大鼠体外肥大细胞以及RBL-2H3细胞脱颗粒试验的方法,评估2种细胞脱颗粒方法对中药注射剂(traditional Chinese medicine injections,TCMI)引起脱颗粒的可行性。方法:提取大鼠腹腔肥大细胞(rat peritoneal mast cell,RPMC),优...目的:建立大鼠体外肥大细胞以及RBL-2H3细胞脱颗粒试验的方法,评估2种细胞脱颗粒方法对中药注射剂(traditional Chinese medicine injections,TCMI)引起脱颗粒的可行性。方法:提取大鼠腹腔肥大细胞(rat peritoneal mast cell,RPMC),优化实验条件,用阳性药物C48/80和各种TCMI等与其共培养,通过甲苯胺蓝染色法计数腹腔MC脱颗粒率;通过RBL-2H3细胞与TCMI共同培养,底物显色法检测β-氨基己糖苷酶释放率。结果:阳性对照品C48/80的浓度与RPMC脱颗粒有一定的量效关系;参麦、冠心宁、痰热清、清开灵和生脉5种TCMI能显著引起细胞脱颗粒,并与药物浓度有一定的正相关性;RBL-2H3细胞脱颗粒方法中参麦、黄芪、银杏、痰热清、丹香冠心、清开灵和生脉7种TCMI能是β-氨基己糖苷酶释放率升高。结论:一些TCMI能引起体外RPMC和RBL-2H3细胞脱颗粒,2种细胞脱颗粒方法在评价一些TCMI可能引起类过敏反应方面具有一定的互补性与可行性。展开更多
Tay-Sachs disease and Sandhoff disease are severe hereditary neurodegenerative disorders caused by a deficiency ofβ-hexosaminidase A(HexA)enzyme,which results in the accumulation of GM2 gangliosides in the nervous sy...Tay-Sachs disease and Sandhoff disease are severe hereditary neurodegenerative disorders caused by a deficiency ofβ-hexosaminidase A(HexA)enzyme,which results in the accumulation of GM2 gangliosides in the nervous system cells.In this work,we analyzed the efficacy and safety of cell-mediated gene therapy for Sandhoff disease and Sandhoff disease using a bicistronic lentiviral vector encoding cDNA of HexAα-andβ-subunit genes separated by the nucleotide sequence of a P2A peptide(HEXA-HEXB).The functionality of the bicistronic construct containing the HEXA-HEXB genetic cassette was analyzed in a culture of HEK293T cells and human umbilical cord blood mononuclear cells(hUCBMCs).Our results showed that the enzymatic activity of HexA in the conditioned medium harvested from genetically modified HEK293T-HEXA-HEXB and hUCBMCs-HEXA-HEXB was increased by 23 and 8 times,respectively,compared with the conditioned medium of native cells.Western blot analysis showed that hUCBMCs-HEXA-HEXB secreted both completely separated HEXA and HEXB proteins,and an uncleaved protein containing HEXA+HEXB linked by the P2A peptide.Intravenous injection of genetically modified hUCBMCs-HEXA-HEXB to laboratory Wistar rats was carried out,and the HexA enzymatic activity in the blood plasma of experimental animals,as well as the number of live cells of immune system organs(spleen,thymus,bone marrow,lymph nodes)were determined.A significant increase in the enzymatic activity of HexA in the blood plasma of laboratory rats on days 6 and 9(by 2.5 and 3 times,respectively)after the administration of hUCBMCsHEXA-HEXB was shown.At the same time,the number of live cells in the studied organs remained unchanged.Thus,the functionality of the bicistronic genetic construct encoding cDNA of the HEXA and HEXB genes separated by the nucleotide sequence of the P2A peptide was shown in vitro and in vivo.We hypothesize that due to the natural ability of hUCBMCs to overcome biological barriers,such a strategy can restore the activity of the missing enzyme in the展开更多
Aims: To study RBL-2H3 cell degranulation phenomena induced by some TCMIs through cell morphological and ultra-structural observation, released enzyme activity and establish RBL-2H3 cell degranulation test indicated ...Aims: To study RBL-2H3 cell degranulation phenomena induced by some TCMIs through cell morphological and ultra-structural observation, released enzyme activity and establish RBL-2H3 cell degranulation test indicated by β- hexosaminidase activity as a method to evaluate TCMIs at nonclinical stage. Methods: RBL-2H3 cells were used to study the degranulation by co-culture with positive control C48/80 and some TCMIs through morphological and ultra-structure observation, β-hexosaminidase activity detection. RBL-2H3 cell degranulation test was established to detect β-hexosaminidase activity caused by 17 kinds of TCMIs and their ingredients. The cytotoxicity effect of some TCMIs on both RBL 2H3 and BRL cells was measured by CCK-8 assay. Results: Toluidine blue staining and ultra-structure of electronic microscope observation of treated RBL-2H3 cells showed degranulation morphologically. Detection of β-hexosaminidase activity in the supernatant of treated cells showed some TCMIs had elevated enzyme release rates. Further analysis of the ingredients and compound in Tanreqing Injection and Shengmai Injection showed Scutellaria baicalensis Georgi in Tanreqing Injection, Red ginseng and Fructus Schisandrae Chinensis in Shengmai Injection were responsible to the degranulation of RBL-2H3 cells. Osmotic pressures and pH influenced RBL-2H3 degranulation. High Osmotic pressure of Tanreqing Injection and low pH of chlorogenic acid at 2.5 and 5.0 mmol/L congcentration might be responsible to high β-hexosaminidase activity. Most of the TCMIs inducing degranulation had cytotoxicity effect for both RBL-2H3 and BRL cells, but some TCMIs inducing degranulation had no cytotoxicity effect. Conclusion: Some TCMIs can induce degranulation of RBL-2H3 cells;RBL-2H3 cell degranulation test can be used in non-clinical stage to detect the risk causing anaphylactoid reactions. Osmotic pressures and pH influenced RBL-2H3 degranulation, and they should be measured before testing. The mechanism of degranulation caused by some TCMIs is cytotoxic展开更多
GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorde rs.These diseases result from a deficiency of lysosomal enzymeβ-hexosaminidase A(HexA),which is responsible for GM2 ganglioside degradat...GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorde rs.These diseases result from a deficiency of lysosomal enzymeβ-hexosaminidase A(HexA),which is responsible for GM2 ganglioside degradation.HexA deficiency causes the accumulation of GM2-gangliosides mainly in the nervous system cells,leading to severe progressive neurodegeneration and neuroinflammation.To date,there is no treatment for these diseases.Cell-mediated gene therapy is considered a promising treatment for GM2 gangliosidoses.This study aimed to evaluate the ability of genetically modified mesenchymal stem cells(MSCs-HEXA-HEXB)to restore HexA deficiency in Tay-Sachs disease patient cells,as well as to analyze the functionality and biodistribution of MSCs in vivo.The effectiveness of HexA deficiency cross-correction was shown in mutant MSCs upon intera ction with MSCs-HEXA-HEXB.The results also showed that the MSCs-HEXA-HEXB express the functionally active HexA enzyme,detectable in vivo,and intravenous injection of the cells does not cause an immune response in animals.These data suggest that genetically modified mesenchymal stem cells have the potentials to treat GM2 gangliosidoses.展开更多
文摘Purpose: To compare the sensitivity of Hexosaminidase A (HexA) enzyme-based testing to gene sequencing for carrier detection in non-Jewish individuals. Methods: Blood samples were obtained from parents and relatives of affected patients at an annual Tay-Sachs and Allied Diseases Foundation meeting. A family history was taken for each individual. Samples were analyzed for leukocyte HexA activity, serum HexA activity and subjected to extensive gene sequencing. The results from these analyses were combined with our previously published data describing 34 obligate Tay-Sachs disease (TSD) carriers. Results: Twelve additional TSD carriers were detected in this study. Gene sequencing successfully identified all 12 carriers whereas enzyme analysis identified 11 of 12 carriers. This individual is a carrier of the B1 variant that is known to cause false negative results with enzyme testing. Combined data from 46 non-Jewish TSD carriers revealed that gene sequencing had a higher sensitivity rate than HexA enzyme-based testing (94% versus 87%) in non-Jewish TSD carriers. In our series, approximately 4% of non-Jewish TSD carriers have this mutation. Conclusions: HexA gene sequencing provides a higher sensitivity for TSD carrier detection than HexA based enzyme analysis in non-Jewish patients primarily due to the presence of individuals with the B1 variant.
文摘目的:建立大鼠体外肥大细胞以及RBL-2H3细胞脱颗粒试验的方法,评估2种细胞脱颗粒方法对中药注射剂(traditional Chinese medicine injections,TCMI)引起脱颗粒的可行性。方法:提取大鼠腹腔肥大细胞(rat peritoneal mast cell,RPMC),优化实验条件,用阳性药物C48/80和各种TCMI等与其共培养,通过甲苯胺蓝染色法计数腹腔MC脱颗粒率;通过RBL-2H3细胞与TCMI共同培养,底物显色法检测β-氨基己糖苷酶释放率。结果:阳性对照品C48/80的浓度与RPMC脱颗粒有一定的量效关系;参麦、冠心宁、痰热清、清开灵和生脉5种TCMI能显著引起细胞脱颗粒,并与药物浓度有一定的正相关性;RBL-2H3细胞脱颗粒方法中参麦、黄芪、银杏、痰热清、丹香冠心、清开灵和生脉7种TCMI能是β-氨基己糖苷酶释放率升高。结论:一些TCMI能引起体外RPMC和RBL-2H3细胞脱颗粒,2种细胞脱颗粒方法在评价一些TCMI可能引起类过敏反应方面具有一定的互补性与可行性。
基金funded by the subsidy allocated to Kazan Federal University for the state assignment#0671-2020-0058 in the sphere of scientific activities。
文摘Tay-Sachs disease and Sandhoff disease are severe hereditary neurodegenerative disorders caused by a deficiency ofβ-hexosaminidase A(HexA)enzyme,which results in the accumulation of GM2 gangliosides in the nervous system cells.In this work,we analyzed the efficacy and safety of cell-mediated gene therapy for Sandhoff disease and Sandhoff disease using a bicistronic lentiviral vector encoding cDNA of HexAα-andβ-subunit genes separated by the nucleotide sequence of a P2A peptide(HEXA-HEXB).The functionality of the bicistronic construct containing the HEXA-HEXB genetic cassette was analyzed in a culture of HEK293T cells and human umbilical cord blood mononuclear cells(hUCBMCs).Our results showed that the enzymatic activity of HexA in the conditioned medium harvested from genetically modified HEK293T-HEXA-HEXB and hUCBMCs-HEXA-HEXB was increased by 23 and 8 times,respectively,compared with the conditioned medium of native cells.Western blot analysis showed that hUCBMCs-HEXA-HEXB secreted both completely separated HEXA and HEXB proteins,and an uncleaved protein containing HEXA+HEXB linked by the P2A peptide.Intravenous injection of genetically modified hUCBMCs-HEXA-HEXB to laboratory Wistar rats was carried out,and the HexA enzymatic activity in the blood plasma of experimental animals,as well as the number of live cells of immune system organs(spleen,thymus,bone marrow,lymph nodes)were determined.A significant increase in the enzymatic activity of HexA in the blood plasma of laboratory rats on days 6 and 9(by 2.5 and 3 times,respectively)after the administration of hUCBMCsHEXA-HEXB was shown.At the same time,the number of live cells in the studied organs remained unchanged.Thus,the functionality of the bicistronic genetic construct encoding cDNA of the HEXA and HEXB genes separated by the nucleotide sequence of the P2A peptide was shown in vitro and in vivo.We hypothesize that due to the natural ability of hUCBMCs to overcome biological barriers,such a strategy can restore the activity of the missing enzyme in the
文摘Aims: To study RBL-2H3 cell degranulation phenomena induced by some TCMIs through cell morphological and ultra-structural observation, released enzyme activity and establish RBL-2H3 cell degranulation test indicated by β- hexosaminidase activity as a method to evaluate TCMIs at nonclinical stage. Methods: RBL-2H3 cells were used to study the degranulation by co-culture with positive control C48/80 and some TCMIs through morphological and ultra-structure observation, β-hexosaminidase activity detection. RBL-2H3 cell degranulation test was established to detect β-hexosaminidase activity caused by 17 kinds of TCMIs and their ingredients. The cytotoxicity effect of some TCMIs on both RBL 2H3 and BRL cells was measured by CCK-8 assay. Results: Toluidine blue staining and ultra-structure of electronic microscope observation of treated RBL-2H3 cells showed degranulation morphologically. Detection of β-hexosaminidase activity in the supernatant of treated cells showed some TCMIs had elevated enzyme release rates. Further analysis of the ingredients and compound in Tanreqing Injection and Shengmai Injection showed Scutellaria baicalensis Georgi in Tanreqing Injection, Red ginseng and Fructus Schisandrae Chinensis in Shengmai Injection were responsible to the degranulation of RBL-2H3 cells. Osmotic pressures and pH influenced RBL-2H3 degranulation. High Osmotic pressure of Tanreqing Injection and low pH of chlorogenic acid at 2.5 and 5.0 mmol/L congcentration might be responsible to high β-hexosaminidase activity. Most of the TCMIs inducing degranulation had cytotoxicity effect for both RBL-2H3 and BRL cells, but some TCMIs inducing degranulation had no cytotoxicity effect. Conclusion: Some TCMIs can induce degranulation of RBL-2H3 cells;RBL-2H3 cell degranulation test can be used in non-clinical stage to detect the risk causing anaphylactoid reactions. Osmotic pressures and pH influenced RBL-2H3 degranulation, and they should be measured before testing. The mechanism of degranulation caused by some TCMIs is cytotoxic
基金supported by the subsidy allocated to Kazan Federal University for the state assignment#0671-2020-0058 in the sphere of scientific activities(to AAR)the Kazan Federal University Strategic Academic Leadership Program(PRIORITY-2030)。
文摘GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorde rs.These diseases result from a deficiency of lysosomal enzymeβ-hexosaminidase A(HexA),which is responsible for GM2 ganglioside degradation.HexA deficiency causes the accumulation of GM2-gangliosides mainly in the nervous system cells,leading to severe progressive neurodegeneration and neuroinflammation.To date,there is no treatment for these diseases.Cell-mediated gene therapy is considered a promising treatment for GM2 gangliosidoses.This study aimed to evaluate the ability of genetically modified mesenchymal stem cells(MSCs-HEXA-HEXB)to restore HexA deficiency in Tay-Sachs disease patient cells,as well as to analyze the functionality and biodistribution of MSCs in vivo.The effectiveness of HexA deficiency cross-correction was shown in mutant MSCs upon intera ction with MSCs-HEXA-HEXB.The results also showed that the MSCs-HEXA-HEXB express the functionally active HexA enzyme,detectable in vivo,and intravenous injection of the cells does not cause an immune response in animals.These data suggest that genetically modified mesenchymal stem cells have the potentials to treat GM2 gangliosidoses.