A novel grooving method for eliminating the bending-induced collapse of hexagonal honeycombs has been proposed,which lies in determining the appropriate grooving parameters,including the grooving spacing,angle,and dep...A novel grooving method for eliminating the bending-induced collapse of hexagonal honeycombs has been proposed,which lies in determining the appropriate grooving parameters,including the grooving spacing,angle,and depth.To this end,a framework built upon the experiment-based,machine learning approach for grooving parameters prediction was presented.The continuously grooved honeycomb bending experiments with various radii,honeycomb types,and thicknesses were carried out,and then the deformation level of honeycombs at different grooving spacing was quantitatively evaluated.A criterion for determining the grooving spacing was proposed by setting an appropriate tolerance for the out-of-plane compression strength.It was found that as the curvature increases,the grooving spacing increases due to the deformation level of honeycombs being more severe at a smaller bending radius.Besides,the grooving spacing drops as the honeycomb thickness increases,and the cell size has a positive effect on the grooving spacing,while the relative density has a negative effect on the grooving spacing.Furthermore,the data-driven Gaussian Process(GP)was trained from the collected data to predict the grooving spacing efficiently.The grooving angle and depth were calculated using the geometrical relationship of honeycombs before and after bending.Finally,the grooving parameters design and verification of a honeycomb sandwich fairing part were conducted based on the proposed grooving method.展开更多
The properties of two-dimensional (2D) photonic crystals (PCs) composed of germanium (Ge) are discussed. We investigate polarization-dependent photonic band diagrams (transverse electric and transverse magnetic polari...The properties of two-dimensional (2D) photonic crystals (PCs) composed of germanium (Ge) are discussed. We investigate polarization-dependent photonic band diagrams (transverse electric and transverse magnetic polarizations), gap maps, surface plots, contour maps, etc. for 2D PCs with Ge rods in air and vice versa for two different lattices geometries, namely hexagonal and honeycomb lattices. The obtained graphs for the four possible combinations are presented in this paper. All the graphs depict clear photonic band gaps. The conditions for the largest TE and TM band gaps are described. The honeycomb lattice of Ge rods in air background offers a large complete photonic band gap Δω/ωm greater than 8% (for rod radius of r = 0.2 μm). Using these data, new Ge based photonic devices can be fabricated to confine, control and manipulate light in a more useful way.展开更多
Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their traffic.Newresearch directions will lead to fundamental changes in the design of future Fifth...Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their traffic.Newresearch directions will lead to fundamental changes in the design of future Fifthgeneration(5G)cellular networks.For the formal reason,the study solves the physical network of the mobile base station for the prediction of the best characteristics to develop an enhanced network with the help of graph theory.Any number that can be uniquely calculated by a graph is known as a graph invariant.During the last two decades,innumerable numerical graph invariants have been portrayed and used for correlation analysis.In any case,no efficient assessment has been embraced to choose,how much these invariants are connected with a network graph.This paper will talk about two unique variations of the hexagonal graph with great capability of forecasting in the field of optimized mobile base station topology in setting with physical networks.Since K-banhatti sombor invariants(KBSO)and Contrharmonic-quadratic invariants(CQIs)are newly introduced and have various expectation characteristics for various variations of hexagonal graphs or networks.As the hexagonal networks are used in mobile base stations in layered,forms called honeycomb.The review settled the topology of a hexagon of two distinct sorts with two invariants KBSO and CQIs and their reduced forms.The deduced outcomes can be utilized for the modeling of mobile cellular networks,multiprocessors interconnections,microchips,chemical compound synthesis and memory interconnection networks.The results find sharp upper bounds and lower bounds of the honeycomb network to utilize the Mobile base station network(MBSN)for the high load of traffic and minimal traffic also.展开更多
This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analyti...This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.展开更多
基金the National Natural Science Foundation of China(No.11902256)the Natural Science Basic Research Program of Shaanxi,China(No.2019JQ-479).
文摘A novel grooving method for eliminating the bending-induced collapse of hexagonal honeycombs has been proposed,which lies in determining the appropriate grooving parameters,including the grooving spacing,angle,and depth.To this end,a framework built upon the experiment-based,machine learning approach for grooving parameters prediction was presented.The continuously grooved honeycomb bending experiments with various radii,honeycomb types,and thicknesses were carried out,and then the deformation level of honeycombs at different grooving spacing was quantitatively evaluated.A criterion for determining the grooving spacing was proposed by setting an appropriate tolerance for the out-of-plane compression strength.It was found that as the curvature increases,the grooving spacing increases due to the deformation level of honeycombs being more severe at a smaller bending radius.Besides,the grooving spacing drops as the honeycomb thickness increases,and the cell size has a positive effect on the grooving spacing,while the relative density has a negative effect on the grooving spacing.Furthermore,the data-driven Gaussian Process(GP)was trained from the collected data to predict the grooving spacing efficiently.The grooving angle and depth were calculated using the geometrical relationship of honeycombs before and after bending.Finally,the grooving parameters design and verification of a honeycomb sandwich fairing part were conducted based on the proposed grooving method.
文摘The properties of two-dimensional (2D) photonic crystals (PCs) composed of germanium (Ge) are discussed. We investigate polarization-dependent photonic band diagrams (transverse electric and transverse magnetic polarizations), gap maps, surface plots, contour maps, etc. for 2D PCs with Ge rods in air and vice versa for two different lattices geometries, namely hexagonal and honeycomb lattices. The obtained graphs for the four possible combinations are presented in this paper. All the graphs depict clear photonic band gaps. The conditions for the largest TE and TM band gaps are described. The honeycomb lattice of Ge rods in air background offers a large complete photonic band gap Δω/ωm greater than 8% (for rod radius of r = 0.2 μm). Using these data, new Ge based photonic devices can be fabricated to confine, control and manipulate light in a more useful way.
基金funded by the Deanship of Scientific Research(DSR),King Abdul-Aziz University,Jeddah,Saudi Arabia under Grant No.(RG−11–611–43).
文摘Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their traffic.Newresearch directions will lead to fundamental changes in the design of future Fifthgeneration(5G)cellular networks.For the formal reason,the study solves the physical network of the mobile base station for the prediction of the best characteristics to develop an enhanced network with the help of graph theory.Any number that can be uniquely calculated by a graph is known as a graph invariant.During the last two decades,innumerable numerical graph invariants have been portrayed and used for correlation analysis.In any case,no efficient assessment has been embraced to choose,how much these invariants are connected with a network graph.This paper will talk about two unique variations of the hexagonal graph with great capability of forecasting in the field of optimized mobile base station topology in setting with physical networks.Since K-banhatti sombor invariants(KBSO)and Contrharmonic-quadratic invariants(CQIs)are newly introduced and have various expectation characteristics for various variations of hexagonal graphs or networks.As the hexagonal networks are used in mobile base stations in layered,forms called honeycomb.The review settled the topology of a hexagon of two distinct sorts with two invariants KBSO and CQIs and their reduced forms.The deduced outcomes can be utilized for the modeling of mobile cellular networks,multiprocessors interconnections,microchips,chemical compound synthesis and memory interconnection networks.The results find sharp upper bounds and lower bounds of the honeycomb network to utilize the Mobile base station network(MBSN)for the high load of traffic and minimal traffic also.
基金supported by the National Natural Science Foundation of China(Nos.52175079 and 12072091)the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments of China(No.6142905192512)+2 种基金the Fundamental Research Funds for the Central Universities of China(No.N2103026)the Major Projects of AeroEngines and Gas Turbines of China(No.J2019-I-0008-0008)the China Postdoctoral Science Foundation(No.2020M680990)。
文摘This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.