Due to the unprecedented rate of transformation in thefield of wireless communication industry,there is a need to prioritise the coverage,network power and throughput as preconditions.In Heterogeneous Networks(HetNets...Due to the unprecedented rate of transformation in thefield of wireless communication industry,there is a need to prioritise the coverage,network power and throughput as preconditions.In Heterogeneous Networks(HetNets)the low power node inclusion like Femto and Pico cells creates a network of Multi-Tier(M-Tier)which is regarded as the most significant strategy for enhancing the coverage,throughput,4G Long Term Evolution(LTE)ability.This work mainly focuses on M-Tier 3D Heterogeneous Networks Energy Efficiency(EE)based Carrier Aggregation(CA)scheme for streaming real-time huge data like images.Atfirst,M-Tier 3D HetNets scheme was made for investigating Signal to Noise Interference Ratio(SNIR)on assessing the collective Pico-tier and Femto-tier interference.Next,the scheme of channel allocation is scrutinised so as to esti-mate throughput from the multiple tiers.Additionally,with the use of CA technique,the problem of energy efficiency for M-Tier 3D Heterogeneous Network(HetNet)in relation to energy metrics and throughput was evaluated with the use of LTE and Wireless Fidelity(Wi-Fi)coexistence.The simulation is carried out in a MATLAB setting,and the outcomes reveal a huge impact on EE.The simulation is carried in terms of EE,transmission time,throughput,packet success rate,convergence probability,and coverage region.The analysis from simu-lation shows that on improving the output of the device,interference among small cell base stations is reduced on increasing EE.The outcomes attained aid in the effective creation of M-Tier 3D HetNets for enhancing EE by employing Multi-Stream Carrier Aggregation(MSCA)in HetNets.展开更多
Cell-free Wireless Heterogeneous Networks(HetNets)have emerged as a technological alternative for conventional cellular networks.In this paper,we study the spatially correlative caching strategy,the energy analysis,an...Cell-free Wireless Heterogeneous Networks(HetNets)have emerged as a technological alternative for conventional cellular networks.In this paper,we study the spatially correlative caching strategy,the energy analysis,and the impact of parameter β on the total energy cost of the cell-free wireless HetNets with Access Points distributed by Beta Ginibre Point Process(β-GPP).We derive the approximate expression of Successful Delivery Probability(SDP)based on the Signal-to-Interference-plus-Noise Ratio coverage model.From both analytical and simulation results,it is shown that the proposed caching model based on β-GPP placement,which jointly takes into account path loss,fading,and interference,can closely simulate the caching performance of the cell-free HetNets in terms of SDP.By guaranteeing the outage probability constraints,the analytical expression of the uplink energy cost is also derived.Another conclusion is that with AP locations modeled by β-GPP,the power consumption is not sensitive to β,but is sensitive to the dimension of the kernel function;hence β is less restrictive,and only the truncation of the Ginibre kernel has to be appropriately modified.These findings are new compared with the existing literature where the nodes are commonly assumed to be of Poisson Point Process,Matern Hard-Core Process,or Poisson Cluster Process deployment in cell-free systems.展开更多
Most existing handover decision system (HDS) designs are monolithic, resulting in high computational cost and unbalance of overall network. A novel modular handover algorithm with a comprehensive load index for the ...Most existing handover decision system (HDS) designs are monolithic, resulting in high computational cost and unbalance of overall network. A novel modular handover algorithm with a comprehensive load index for the 5th generation (5G) heterogeneous networks (HetNets) is proposed. In this paper, the handover parameters, serving as the basis for handover, are classified into network's quality of service (QoS) module, user preference (UP) module and degree of satisfaction (DS) module according to the new modular HDS design. To optimize switching process, the comprehensive network load index is deduced by using triangle module fusion operator. With respect to the existing handover algorithm, the simulation results indicate that the proposed algorithm can reduce the handover frequency and maintain user satisfaction at a higher level. Meanwhile, due to its block calculation, it can bring about 1.4 s execution time improvement.展开更多
LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS...LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS) within the system. However, its development is still constrained by two main issues: 1) Load imbalance caused by different transmission powers for various tiers, and 2) The unbalanced transmission power may also increase unnecessary handover rate. In order to solve the first issue, Cell range expansion (CRE) can be applied in the system, which will benefit lower-tier cell during user association phase;CRE, Hysteresis Margin (HM) and Time-to-Trigger (TTT) will be utilized to bound UE within lower tier network of HetNets and therefore solve the second issue. On the other hand, the relationship of these parameters may be complicated and even reduce QoS if they are chosen incorrectly. This paper will evaluate the advantage and disadvantage of all three parameters and propose a Markov Chain Process (MCP) based method to find optimal HM, CRE and TTT values. And then, the simulation is taken and the optimal combination for our scenario is obtained to be 1 dB, 6 dB and 60 ms respectively. First contribution of this paper is to map the HetNets handover process into MCP and all the phases of handover can be calculated and analysed in probability way, so that further prediction and simulation can be realised. Second contribution is to establish a mathematical method to model the relationship of HM, CRE and TTT in HetNets, therefore the coordination of these three important parameters is achieved to obtain system optimization.展开更多
小小区密集部署的异构网络是5G系统提升网络容量与数据速率的最有效的关键技术之一.随着小小区的大量部署,小小区之间的同频干扰以及小小区基站(Small Cell Base Stations,SeNBs)的能耗问题愈发显著.为提高SeNBs能效并降低小小区间的同...小小区密集部署的异构网络是5G系统提升网络容量与数据速率的最有效的关键技术之一.随着小小区的大量部署,小小区之间的同频干扰以及小小区基站(Small Cell Base Stations,SeNBs)的能耗问题愈发显著.为提高SeNBs能效并降低小小区间的同频干扰,提出一种基于干扰贡献比(Interference Contribution Ratio,ICR)的小小区开关算法,可以仅通过较少的用户设备(User Equipment,UE)信息反馈量与测量过程实现有效的小小区开关操作.仿真表明,所提算法在保持较低的小小区业务损失量的前提下,能有效地降低小小区之间的同频干扰,提高网络总速率与SeNBs能效.展开更多
Heterogeneous networks (HetNets) composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs) in the overlapped area o...Heterogeneous networks (HetNets) composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs) in the overlapped area of multiple cells might be able to access various base stations (BSs) of the cells, resulting in various transmission performances due to cell heterogeneity. Hence, designing optimal cell selection scheme is of particular importance for it may affect user quality of service (QoS) and network performance significantly. In this paper, we jointly consider cell selection and transmit power allocation problem in a HetNet consisting of multiple cells. For a single UE case, we formulate the energy efficiency of the UE, and propose an energy efficient optimization scheme which selects the optimal cell corresponding to the maximum energy efficiency of the UE. The problem is then extended to multiple UEs case. To achieve joint performance optimization of all the UEs, we formulate an optimization problem with the objective of maximizing the sum energy efficiency of UEs subject to QoS and power constraints. The formulated nonlinear fractional optimization problem is equivalently transformed into two subproblems, i.e., power allocation subproblem of each UE-eell pair, and cell selection subproblem of UEs. The two subproblems are solved respectively through applying Lagrange dual method and Kuhn-Munkres (K- M) algorithm. Numerical results demonstrate the efficiency of the proposed algorithm.展开更多
Full-duplex(FD)has been recognized as a promising technology for future 5G networks to improve the spectrum efficiency.However,the biggest practical impediments of realizing full-duplex communications are the presence...Full-duplex(FD)has been recognized as a promising technology for future 5G networks to improve the spectrum efficiency.However,the biggest practical impediments of realizing full-duplex communications are the presence of self-interference,especially in complex cellular networks.With the current development of self-interference cancellation techniques,full-duplex has been considered to be more suitable for device-to-device(D2D)and small cell communications which have small transmission range and low transmit power.In this paper,we consider the full-duplex D2D communications in multi-tier wireless networks and present an analytical model which jointly considers mode selection,resource allocation,and power control.Specifically,we consider a distance based mode selection scheme.The performance analysis of different D2D communications modes are performed based on stochastic geometry,and tractable analytical solutions are obtained.Then we investigate the optimal resource partitions between dedicated D2D mode and cellular mode.Numerical results validate the theoretical anlaysis and indicate that with appropriate proportions of users operated in different transmission modes and optimal partitioning of spectrum,the performance gain of FD-D2D communication can be achieved.展开更多
Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discon...Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.展开更多
Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when ...Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when possible to enhance the user throughput and system capacity by increasing the area spectral efficiency.However,because of the transmit power differences in different tiers of HetNets and irregular service demand,a load imbalance typically exists among different serving nodes.To offload more traffic to LPNs and coordinate the Inter-Cell Interference(ICI),Third-Generation Partnership Project(3GPP)has facilitated the development of the Cell Range Expansion(CRE),enhanced Inter-Cell Interference Coordination(eICIC)and Further enhanced ICIC(FeICIC).In this paper,we develop a cell clustering-based load-aware offsetting and an adaptive Low-Power Subframe(LPS)approach.Our solution allows the separation of User Association(UA)functions at the User Equipment(UE)and network server such that users can make a simple cell-selection decision similar to that in the maximum Received Signal Strength(max-RSS)based UA scheme,where the network server computes the load-aware offsetting and required LPS periods based on the load conditions of the system.The proposed solution is evaluated using system-level simulations wherein the results correspond to performance changes in different service regions.Results show that our method effectively solves the offloading and interference coordination problems in dense HetNets.展开更多
文摘Due to the unprecedented rate of transformation in thefield of wireless communication industry,there is a need to prioritise the coverage,network power and throughput as preconditions.In Heterogeneous Networks(HetNets)the low power node inclusion like Femto and Pico cells creates a network of Multi-Tier(M-Tier)which is regarded as the most significant strategy for enhancing the coverage,throughput,4G Long Term Evolution(LTE)ability.This work mainly focuses on M-Tier 3D Heterogeneous Networks Energy Efficiency(EE)based Carrier Aggregation(CA)scheme for streaming real-time huge data like images.Atfirst,M-Tier 3D HetNets scheme was made for investigating Signal to Noise Interference Ratio(SNIR)on assessing the collective Pico-tier and Femto-tier interference.Next,the scheme of channel allocation is scrutinised so as to esti-mate throughput from the multiple tiers.Additionally,with the use of CA technique,the problem of energy efficiency for M-Tier 3D Heterogeneous Network(HetNet)in relation to energy metrics and throughput was evaluated with the use of LTE and Wireless Fidelity(Wi-Fi)coexistence.The simulation is carried out in a MATLAB setting,and the outcomes reveal a huge impact on EE.The simulation is carried in terms of EE,transmission time,throughput,packet success rate,convergence probability,and coverage region.The analysis from simu-lation shows that on improving the output of the device,interference among small cell base stations is reduced on increasing EE.The outcomes attained aid in the effective creation of M-Tier 3D HetNets for enhancing EE by employing Multi-Stream Carrier Aggregation(MSCA)in HetNets.
基金supported in part by the National Natural Science Foundation of China(NSFC)under the grant number 61901075the Natural Science Foundation of Chongqing,China,under the grant number cstc2019jcyj-msxmX0602+1 种基金Chongqing Basic and Cutting edge Project under the grant number cstc2018jcyjAX0507Chongqing University of Posts and Telecommunications Doctoral Candidates High-end Talent Training Project(No.BYJS2017001).
文摘Cell-free Wireless Heterogeneous Networks(HetNets)have emerged as a technological alternative for conventional cellular networks.In this paper,we study the spatially correlative caching strategy,the energy analysis,and the impact of parameter β on the total energy cost of the cell-free wireless HetNets with Access Points distributed by Beta Ginibre Point Process(β-GPP).We derive the approximate expression of Successful Delivery Probability(SDP)based on the Signal-to-Interference-plus-Noise Ratio coverage model.From both analytical and simulation results,it is shown that the proposed caching model based on β-GPP placement,which jointly takes into account path loss,fading,and interference,can closely simulate the caching performance of the cell-free HetNets in terms of SDP.By guaranteeing the outage probability constraints,the analytical expression of the uplink energy cost is also derived.Another conclusion is that with AP locations modeled by β-GPP,the power consumption is not sensitive to β,but is sensitive to the dimension of the kernel function;hence β is less restrictive,and only the truncation of the Ginibre kernel has to be appropriately modified.These findings are new compared with the existing literature where the nodes are commonly assumed to be of Poisson Point Process,Matern Hard-Core Process,or Poisson Cluster Process deployment in cell-free systems.
基金supported by the Program for Innovation Team Building at Institutions of High Education in Chongqing (KJTD201312)the Hi-Tech Research and Development Program of China (2015AA01A705,2014AA01A706)
文摘Most existing handover decision system (HDS) designs are monolithic, resulting in high computational cost and unbalance of overall network. A novel modular handover algorithm with a comprehensive load index for the 5th generation (5G) heterogeneous networks (HetNets) is proposed. In this paper, the handover parameters, serving as the basis for handover, are classified into network's quality of service (QoS) module, user preference (UP) module and degree of satisfaction (DS) module according to the new modular HDS design. To optimize switching process, the comprehensive network load index is deduced by using triangle module fusion operator. With respect to the existing handover algorithm, the simulation results indicate that the proposed algorithm can reduce the handover frequency and maintain user satisfaction at a higher level. Meanwhile, due to its block calculation, it can bring about 1.4 s execution time improvement.
文摘LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS) within the system. However, its development is still constrained by two main issues: 1) Load imbalance caused by different transmission powers for various tiers, and 2) The unbalanced transmission power may also increase unnecessary handover rate. In order to solve the first issue, Cell range expansion (CRE) can be applied in the system, which will benefit lower-tier cell during user association phase;CRE, Hysteresis Margin (HM) and Time-to-Trigger (TTT) will be utilized to bound UE within lower tier network of HetNets and therefore solve the second issue. On the other hand, the relationship of these parameters may be complicated and even reduce QoS if they are chosen incorrectly. This paper will evaluate the advantage and disadvantage of all three parameters and propose a Markov Chain Process (MCP) based method to find optimal HM, CRE and TTT values. And then, the simulation is taken and the optimal combination for our scenario is obtained to be 1 dB, 6 dB and 60 ms respectively. First contribution of this paper is to map the HetNets handover process into MCP and all the phases of handover can be calculated and analysed in probability way, so that further prediction and simulation can be realised. Second contribution is to establish a mathematical method to model the relationship of HM, CRE and TTT in HetNets, therefore the coordination of these three important parameters is achieved to obtain system optimization.
文摘Heterogeneous networks (HetNets) composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs) in the overlapped area of multiple cells might be able to access various base stations (BSs) of the cells, resulting in various transmission performances due to cell heterogeneity. Hence, designing optimal cell selection scheme is of particular importance for it may affect user quality of service (QoS) and network performance significantly. In this paper, we jointly consider cell selection and transmit power allocation problem in a HetNet consisting of multiple cells. For a single UE case, we formulate the energy efficiency of the UE, and propose an energy efficient optimization scheme which selects the optimal cell corresponding to the maximum energy efficiency of the UE. The problem is then extended to multiple UEs case. To achieve joint performance optimization of all the UEs, we formulate an optimization problem with the objective of maximizing the sum energy efficiency of UEs subject to QoS and power constraints. The formulated nonlinear fractional optimization problem is equivalently transformed into two subproblems, i.e., power allocation subproblem of each UE-eell pair, and cell selection subproblem of UEs. The two subproblems are solved respectively through applying Lagrange dual method and Kuhn-Munkres (K- M) algorithm. Numerical results demonstrate the efficiency of the proposed algorithm.
基金This work was supported by National Natural Science Foundation of China.The grant number is 61672283.
文摘Full-duplex(FD)has been recognized as a promising technology for future 5G networks to improve the spectrum efficiency.However,the biggest practical impediments of realizing full-duplex communications are the presence of self-interference,especially in complex cellular networks.With the current development of self-interference cancellation techniques,full-duplex has been considered to be more suitable for device-to-device(D2D)and small cell communications which have small transmission range and low transmit power.In this paper,we consider the full-duplex D2D communications in multi-tier wireless networks and present an analytical model which jointly considers mode selection,resource allocation,and power control.Specifically,we consider a distance based mode selection scheme.The performance analysis of different D2D communications modes are performed based on stochastic geometry,and tractable analytical solutions are obtained.Then we investigate the optimal resource partitions between dedicated D2D mode and cellular mode.Numerical results validate the theoretical anlaysis and indicate that with appropriate proportions of users operated in different transmission modes and optimal partitioning of spectrum,the performance gain of FD-D2D communication can be achieved.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB 2900304the Shenzhen Science and Technology Program under Grants KQTD20190929172545139 and ZDSYS20210623091808025.
文摘Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.
文摘Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when possible to enhance the user throughput and system capacity by increasing the area spectral efficiency.However,because of the transmit power differences in different tiers of HetNets and irregular service demand,a load imbalance typically exists among different serving nodes.To offload more traffic to LPNs and coordinate the Inter-Cell Interference(ICI),Third-Generation Partnership Project(3GPP)has facilitated the development of the Cell Range Expansion(CRE),enhanced Inter-Cell Interference Coordination(eICIC)and Further enhanced ICIC(FeICIC).In this paper,we develop a cell clustering-based load-aware offsetting and an adaptive Low-Power Subframe(LPS)approach.Our solution allows the separation of User Association(UA)functions at the User Equipment(UE)and network server such that users can make a simple cell-selection decision similar to that in the maximum Received Signal Strength(max-RSS)based UA scheme,where the network server computes the load-aware offsetting and required LPS periods based on the load conditions of the system.The proposed solution is evaluated using system-level simulations wherein the results correspond to performance changes in different service regions.Results show that our method effectively solves the offloading and interference coordination problems in dense HetNets.