设H是一个Hilbert空间.B(H)表示所有H到H的有界线性算子构成的Banach空间.设T={f(z):f(z)=zI-sum from n=2 to∞z^n A_n在单位圆盘|z|<1上解析,其中系数A_n是H到H的紧正Hermitian算子,I表示H上的恒等算子,sum from n=2 to∞n(A_nx,x)...设H是一个Hilbert空间.B(H)表示所有H到H的有界线性算子构成的Banach空间.设T={f(z):f(z)=zI-sum from n=2 to∞z^n A_n在单位圆盘|z|<1上解析,其中系数A_n是H到H的紧正Hermitian算子,I表示H上的恒等算子,sum from n=2 to∞n(A_nx,x)≤1对所有x∈H,‖x‖=1成立}.该文研究了函数族T的极值点.展开更多
We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put...We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put forward two new versionsof well known comparison theorem and apply them to some examples.展开更多
文摘设H是一个Hilbert空间.B(H)表示所有H到H的有界线性算子构成的Banach空间.设T={f(z):f(z)=zI-sum from n=2 to∞z^n A_n在单位圆盘|z|<1上解析,其中系数A_n是H到H的紧正Hermitian算子,I表示H上的恒等算子,sum from n=2 to∞n(A_nx,x)≤1对所有x∈H,‖x‖=1成立}.该文研究了函数族T的极值点.
基金This work is supported by NSF of Shanxi province,20011041.
文摘We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put forward two new versionsof well known comparison theorem and apply them to some examples.