期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
杆、梁有限元模型的模态的振荡性质 被引量:5
1
作者 郑子君 陈璞 王大钧 《振动与冲击》 EI CSCD 北大核心 2012年第20期79-83,共5页
杆、弦、梁等常见一维连续体的固有模态具有振荡性质。一维连续体进行离散后的固有模态是否仍具有振荡性质,表征着数值计算是否真实反映了原问题。业已通过化刚度矩阵为三对角矩阵的乘积的方法证明了:常见支承条件下的有限差分梁、杆以... 杆、弦、梁等常见一维连续体的固有模态具有振荡性质。一维连续体进行离散后的固有模态是否仍具有振荡性质,表征着数值计算是否真实反映了原问题。业已通过化刚度矩阵为三对角矩阵的乘积的方法证明了:常见支承条件下的有限差分梁、杆以及采用集中质量矩阵的有限元杆、弦的模态具有振荡性质。在有限元计算中,Euler梁通常采用带转角变量的Hermite三次插值函数进行离散,目前尚未见到此种离散梁的模态是否具有振荡性质的论述。从连续杆、弦、梁的振荡性质出发,结合有限元解的特性,指出在集中质量矩阵的条件下,如果离散模型在结点集中力作用下,节点位移与解析解相等,则此离散模型的模态具有振荡性质;具体说来,杆、弦的有限元模型模态具有振荡性质,从最小余能原理构造的梁有限元模型模态具有振荡性质;对于Hermite三次插值函数的位移Euler梁单元,若截面参数在单元内取常数,模态也具有此性质;但是,若截面参数在单元内不为常数,模态未必具有振荡性质。 展开更多
关键词 振荡性质 有限元法 Euler梁 hermite梁单元
下载PDF
埃尔米特梁单元的分块对角与高阶质量矩阵
2
作者 王东东 吴振宇 侯松阳 《计算力学学报》 CAS CSCD 北大核心 2024年第1期178-185,共8页
埃尔米特梁单元常用的集中质量矩阵,是由挠度自由度对应的一致质量矩阵元素通过行求和或节点积分构造.然而,数值结果表明该集中质量矩阵在求解包含自由端的梁振动问题时,会出现频率精度掉阶现象.本文首先从保障质量矩阵最优收敛性的数... 埃尔米特梁单元常用的集中质量矩阵,是由挠度自由度对应的一致质量矩阵元素通过行求和或节点积分构造.然而,数值结果表明该集中质量矩阵在求解包含自由端的梁振动问题时,会出现频率精度掉阶现象.本文首先从保障质量矩阵最优收敛性的数值积分精度出发,分别针对三次和五次梁单元,发展了质量矩阵的梯度增强节点积分方案.利用梯度增强节点积分方案,可以得到具有分块对角形式的单元质量矩阵,而其组装的整体质量矩阵除边界节点外仍然呈现对角形式.对于两种单元,其分块对角质量矩阵分别具有4阶最优精度和6阶次优精度.再者,将标准一致质量矩阵和具有同阶精度的梯度增强节点积分质量矩阵进行优化组合,建立了具有超收敛特性的高阶质量矩阵.最后,通过数值算例系统验证了三次和五次单元的分块对角与高阶质量矩阵的频率计算精度. 展开更多
关键词 埃尔米特梁单元 振动频率 集中质量矩阵 分块对角质量矩阵 高阶质量矩阵
下载PDF
Hermite Finite Element Method for a Class of Viscoelastic Beam Vibration Problem 被引量:1
3
作者 Ying Tang Zhe Yin 《Engineering(科研)》 2021年第8期463-471,共9页
<span style="font-family:Verdana;">Beam equation can describe the deformation of beams and reflect various bending problems and it has been widely used in large engineering projects, bridge constructio... <span style="font-family:Verdana;">Beam equation can describe the deformation of beams and reflect various bending problems and it has been widely used in large engineering projects, bridge construction, aerospace and other fields. It has important engineering practice value and scientific significance for the design of numerical schemes. In this paper, a scheme for vibration equation of viscoelastic beam is developed by using the Hermite finite element. Based on an elliptic projection, the errors of semi-discrete scheme and fully discrete scheme are analyzed respectively, and the optimal </span><i><span style="font-family:Verdana;">L</span></i><sup><span style="font-family:Verdana;vertical-align:super;">2</span></sup><span style="font-family:Verdana;">-norm error estimates are obtained. Finally, a numerical example is given to verify the theoretical predictions and the validity of the scheme. 展开更多
关键词 Viscoelastic beam hermite element Error Estimate Numerical Simulation
下载PDF
Hermite Finite Element Method for Vibration Problem of Euler-Bernoulli Beam on Viscoelastic Pasternak Foundation
4
作者 Pengfei Ji Zhe Yin 《Engineering(科研)》 2024年第10期337-352,共16页
Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul... Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis. 展开更多
关键词 Viscoelastic Pasternak Foundation beam Vibration Equation hermite Finite element Method Error Estimation Numerical Simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部