In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</e...In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</em>, and 4<em>snp</em> Helium-like systems. Then we also applied the variational procedure of the Modified Atomic Orbital Theory to the computations of total energies, excitation energies of doubly-excited states 2<em>snp</em>, 3<em>snp</em>, 4<em>snp</em> types of Helium-like systems. The results obtained in this work are in good agreement with the experimental and theoretical values available.展开更多
In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup&...In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup>1</sup>D<sup>e</sup>, (<em>nd</em><sup>2</sup>) <sup>1</sup>G<sup>e</sup>, (<em>nf</em><sup>2</sup>) <sup>1</sup>I<sup>e</sup>, (<em>ng</em><sup>2</sup>) <sup>1</sup>K<sup>e</sup>, and (<em>nh</em><sup>2</sup>) <sup>1</sup>M<sup>e</sup> of the helium isoelectronic sequence with Z ≤ 10 are calculated in the framework of the variational method of the Screening Constant by Unit Nuclear Charge (SCUNC). These calculations are performed using a new wavefunction correlated to Hylleraas-type. The possibility of using the SCUNC method in the investigation of high-lying Doubly Excited States(DES) in two-electron systems is demonstrated in the present work in the case of the (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></span></sup> doubly excited states, where accurate total energies are tabulated up to <em>n</em> = 20. All the results obtained in this paper are in agreement with the values of the available literature and may be useful for future experimental and theoretical studies on the doubly excited (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></sup> states of two-electron systems.展开更多
The <img alt="" src="Edit_a001991b-d72d-4ec7-885a-6fd2c587397c.bmp" /> <span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;&qu...The <img alt="" src="Edit_a001991b-d72d-4ec7-885a-6fd2c587397c.bmp" /> <span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">doubly excited states of helium-like ions are investigated using a combination of the no-linear parameters of Hylleraas and the </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-parameters of screening constant by unit nuclear charge. Calculations are performed for total energies of low-lying doubly excited states (</span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> = 2</span></span><span><span><span><span> </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span></span><span><span><span><span> </span></span></span></span><span><span><span><span><span style="font-family:Verdana;">9)</span><i> </i><span style="font-family:Verdana;">in He-like ions up to </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;"> = 10. The results obtained from the novel method are in good agreement with the available theoretical calculations and experimental observations.</span></span></span></span></span>展开更多
COMPARED with the popular hyperspherical coordinate scheme, the HHGLF method proposed by Deng and others has the advantages of rapid hyperradial convergence, analytical solution and huge basis set calculation. However...COMPARED with the popular hyperspherical coordinate scheme, the HHGLF method proposed by Deng and others has the advantages of rapid hyperradial convergence, analytical solution and huge basis set calculation. However, the problem of slow convergence in the hyperangle part still exists as other hyperspherical harmonics (HH) methods do. To solve the prob-展开更多
This work presents results of the different parameters which characterize the nonrelativistic Hamilton operator for the helium atoms allowing us to solve the Schrödinger equation. The total energy is decomposed i...This work presents results of the different parameters which characterize the nonrelativistic Hamilton operator for the helium atoms allowing us to solve the Schrödinger equation. The total energy is decomposed into three terms allowing to separate the kinetic energy, the electrons-nucleus interaction energy and the electron-electron interaction energy of the (2s<sup>2</sup>, 3s<sup>2</sup> and 4s<sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (2p<sup>2</sup>, 3p<sup>2</sup> and 4p<sup>2</sup>) <sup>1</sup>D<sup>e</sup> and (3d<sup>2</sup> and 4d<sup>2</sup>) <sup>1</sup>G<sup>e</sup> resonance singlet states of the helium isoelectronic sequences. The states have been defined by using special forms of the Hylleraas type wave functions. The calculations have been carried out in the framework of the variational method using configuration interaction basis states with a real Hamiltonian. The agreement of the energy value of other states between the present theoretical values available in the literature is excellent. But as for the comparison of the kinetic energies, the electrons-nucleus energies interaction and the electron-electron interaction energies, we note a slight difference with the theoretical values common in literature.展开更多
The potential-harmonic and generalized Laguerre function method (PHGLF) was modified into the correlation-function potential-harmonic and generalized Laguerre function method (CFPHGLF). The eigenenergies for 21S, 31S ...The potential-harmonic and generalized Laguerre function method (PHGLF) was modified into the correlation-function potential-harmonic and generalized Laguerre function method (CFPHGLF). The eigenenergies for 21S, 31S and 41S states of helium-like systems from the CFPHGLF are much more accurate than those from the previous PHGLF, but the eigenenergy for the 11S is not as good as that from the PHGLF method. The results indicate that the electron-nucleus cusp plays more important role than the electron-electron cusp and the cluster structure for the loosely bound excited states, and that the electron-electron cusp is absolutely essential for the tightly bound ground state.展开更多
文摘In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</em>, and 4<em>snp</em> Helium-like systems. Then we also applied the variational procedure of the Modified Atomic Orbital Theory to the computations of total energies, excitation energies of doubly-excited states 2<em>snp</em>, 3<em>snp</em>, 4<em>snp</em> types of Helium-like systems. The results obtained in this work are in good agreement with the experimental and theoretical values available.
文摘In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup>1</sup>D<sup>e</sup>, (<em>nd</em><sup>2</sup>) <sup>1</sup>G<sup>e</sup>, (<em>nf</em><sup>2</sup>) <sup>1</sup>I<sup>e</sup>, (<em>ng</em><sup>2</sup>) <sup>1</sup>K<sup>e</sup>, and (<em>nh</em><sup>2</sup>) <sup>1</sup>M<sup>e</sup> of the helium isoelectronic sequence with Z ≤ 10 are calculated in the framework of the variational method of the Screening Constant by Unit Nuclear Charge (SCUNC). These calculations are performed using a new wavefunction correlated to Hylleraas-type. The possibility of using the SCUNC method in the investigation of high-lying Doubly Excited States(DES) in two-electron systems is demonstrated in the present work in the case of the (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></span></sup> doubly excited states, where accurate total energies are tabulated up to <em>n</em> = 20. All the results obtained in this paper are in agreement with the values of the available literature and may be useful for future experimental and theoretical studies on the doubly excited (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></sup> states of two-electron systems.
文摘The <img alt="" src="Edit_a001991b-d72d-4ec7-885a-6fd2c587397c.bmp" /> <span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">doubly excited states of helium-like ions are investigated using a combination of the no-linear parameters of Hylleraas and the </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-parameters of screening constant by unit nuclear charge. Calculations are performed for total energies of low-lying doubly excited states (</span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> = 2</span></span><span><span><span><span> </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span></span><span><span><span><span> </span></span></span></span><span><span><span><span><span style="font-family:Verdana;">9)</span><i> </i><span style="font-family:Verdana;">in He-like ions up to </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;"> = 10. The results obtained from the novel method are in good agreement with the available theoretical calculations and experimental observations.</span></span></span></span></span>
文摘COMPARED with the popular hyperspherical coordinate scheme, the HHGLF method proposed by Deng and others has the advantages of rapid hyperradial convergence, analytical solution and huge basis set calculation. However, the problem of slow convergence in the hyperangle part still exists as other hyperspherical harmonics (HH) methods do. To solve the prob-
文摘This work presents results of the different parameters which characterize the nonrelativistic Hamilton operator for the helium atoms allowing us to solve the Schrödinger equation. The total energy is decomposed into three terms allowing to separate the kinetic energy, the electrons-nucleus interaction energy and the electron-electron interaction energy of the (2s<sup>2</sup>, 3s<sup>2</sup> and 4s<sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (2p<sup>2</sup>, 3p<sup>2</sup> and 4p<sup>2</sup>) <sup>1</sup>D<sup>e</sup> and (3d<sup>2</sup> and 4d<sup>2</sup>) <sup>1</sup>G<sup>e</sup> resonance singlet states of the helium isoelectronic sequences. The states have been defined by using special forms of the Hylleraas type wave functions. The calculations have been carried out in the framework of the variational method using configuration interaction basis states with a real Hamiltonian. The agreement of the energy value of other states between the present theoretical values available in the literature is excellent. But as for the comparison of the kinetic energies, the electrons-nucleus energies interaction and the electron-electron interaction energies, we note a slight difference with the theoretical values common in literature.
基金Project supported by the National Natural Science Foundation of China
文摘The potential-harmonic and generalized Laguerre function method (PHGLF) was modified into the correlation-function potential-harmonic and generalized Laguerre function method (CFPHGLF). The eigenenergies for 21S, 31S and 41S states of helium-like systems from the CFPHGLF are much more accurate than those from the previous PHGLF, but the eigenenergy for the 11S is not as good as that from the PHGLF method. The results indicate that the electron-nucleus cusp plays more important role than the electron-electron cusp and the cluster structure for the loosely bound excited states, and that the electron-electron cusp is absolutely essential for the tightly bound ground state.