Small interplanetary magnetic flux ropes(SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU.These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIM...Small interplanetary magnetic flux ropes(SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU.These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRs are usually <12 h, and the diameters of SIMFRs are <0.20 AU and show power law distribution. Most SIMFRs are observed in the typically slow solar wind(<500 km/s), and only several events are observed with high speed(>700 km/s). Some SIMFRs demonstrate abnormal heavy ion compositions, such as abnormally high He abundance, abnormally high average iron ionization, and enhanced O7+abundance. These SIMFRs originate from remarkably hot coronal origins. Approximately 74.5% SIMFRs exhibit counterstreaming suprathermal electron signatures. Given their flux rope configuration, SIMFRs are potentially more effective for substorms. SIMFRs and magnetic clouds have many similar observational properties but also show some different observations.These similar properties may indicate that SIMFRs are the interplanetary counterparts of small coronal mass ejections. Some direct bodies of evidence have confirmed that several SIMFRs are interplanetary counterparts of CMEs. However, their different properties may imply that some SIMFRs have interplanetary origins. Therefore, one of the main aims of future research on SIMFRs is to determine whether SIMFRs originate from two different sources, that is, some events are formed in the solar coronal atmosphere, whereas others originate from the interplanetary space. Finally, in this paper, we offer some prospects that should be addressed in the future.展开更多
China has planned and implemented a series of lunar and deep space exploration programs since the first lunar exploration satellite Chang’E-1 launched in 2007.In the future,China has initiated the international lunar...China has planned and implemented a series of lunar and deep space exploration programs since the first lunar exploration satellite Chang’E-1 launched in 2007.In the future,China has initiated the international lunar research station program,which aims to build a shared platform on the Moon jointly with many other countries for long-term and continuous lunar exploration,lunar-based observations and experiments,as well as in-situ resource utilization.In addition,China has also proposed an interstellar express mission to unveil the mysteries of the outer heliosphere,nearby interstellar space,and their interactions.This paper gives a brief introduction to the International Lunar Research Station program and the Interstellar Express mission.展开更多
Since 1958 when Parker predicted the existence of solar wind plasma in the interplanetary space, its source regions and acceleration mechanisms have been the problems presented to space physicists. We obtained some re...Since 1958 when Parker predicted the existence of solar wind plasma in the interplanetary space, its source regions and acceleration mechanisms have been the problems presented to space physicists. We obtained some results for average 2-D large scale structures of solar wind mass flux output near the sun by means of a combination study of the interplanetary scintillation (IPS) observations and the K-coronameter data in 1983 and have compared them with the photospheric magnetic field observations for the展开更多
The Solar Ring mission, a concept to monitor the Sun and inner heliosphere from multiple perspectives, has been funded for prephase study by the Strategic Priority Program of Chinese Academy of Sciences in space scien...The Solar Ring mission, a concept to monitor the Sun and inner heliosphere from multiple perspectives, has been funded for prephase study by the Strategic Priority Program of Chinese Academy of Sciences in space sciences. The Solar Ring is comprised of 6 spacecraft, grouped in three pairs, moving around the Sun in an elliptical orbit in the ecliptic plane. The mission costs,including launch fee, deep-space maneuvers, and deployment time of the ring, are highly relevant to the working orbit, deepspace transfer, and phase angle within a group. The preliminary mission profile is analyzed and designed in this paper. The launch way, two spacecraft with one rocket, is adopted. The deployment time, phasing maneuvers, and C_(3) of launch energy are evaluated for the elliptical orbits with the perihelion between 0.7 and 0.9 AU using the rockets of Long March(LM) 3A and 3B.Numerical simulations show two candidate trajectories: fast deployment within 4 years by LM-3B, medium deployment more than 6 years by cheaper rocket of LM-3A. In order to obtain both fast deployment and low launch cost, another orbit profile is proposed by shortening the phase angle within a group. The suggested working orbits and the corresponding costs of launch,deployment time, and phasing maneuvers will strongly support the science objectives.展开更多
In the following sub-sections,studies of solar-heliospheric effects on cosmic rays,investigating a possible link between cosmic ray flux and Earth’s climate,and detection of MeV-rangeγ-rays from thunderstorms with t...In the following sub-sections,studies of solar-heliospheric effects on cosmic rays,investigating a possible link between cosmic ray flux and Earth’s climate,and detection of MeV-rangeγ-rays from thunderstorms with the data from LHAASO will be discussed;geophysical research with environmental neutrons will be introduced,and some Monte Carlo simulation results about effects of thunderstorm electric fields on LHAASO observations of cosmic rays will be given.展开更多
基金the National Natural Science Foundation of China(Grant Nos.41674170 and 41804162).The authors would like to thank Dr.TIAN Hui and HUANG Jia for helpful discussion.
文摘Small interplanetary magnetic flux ropes(SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU.These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRs are usually <12 h, and the diameters of SIMFRs are <0.20 AU and show power law distribution. Most SIMFRs are observed in the typically slow solar wind(<500 km/s), and only several events are observed with high speed(>700 km/s). Some SIMFRs demonstrate abnormal heavy ion compositions, such as abnormally high He abundance, abnormally high average iron ionization, and enhanced O7+abundance. These SIMFRs originate from remarkably hot coronal origins. Approximately 74.5% SIMFRs exhibit counterstreaming suprathermal electron signatures. Given their flux rope configuration, SIMFRs are potentially more effective for substorms. SIMFRs and magnetic clouds have many similar observational properties but also show some different observations.These similar properties may indicate that SIMFRs are the interplanetary counterparts of small coronal mass ejections. Some direct bodies of evidence have confirmed that several SIMFRs are interplanetary counterparts of CMEs. However, their different properties may imply that some SIMFRs have interplanetary origins. Therefore, one of the main aims of future research on SIMFRs is to determine whether SIMFRs originate from two different sources, that is, some events are formed in the solar coronal atmosphere, whereas others originate from the interplanetary space. Finally, in this paper, we offer some prospects that should be addressed in the future.
基金Supported by National Key Research and Development Program of China(2020YFE0202100)。
文摘China has planned and implemented a series of lunar and deep space exploration programs since the first lunar exploration satellite Chang’E-1 launched in 2007.In the future,China has initiated the international lunar research station program,which aims to build a shared platform on the Moon jointly with many other countries for long-term and continuous lunar exploration,lunar-based observations and experiments,as well as in-situ resource utilization.In addition,China has also proposed an interstellar express mission to unveil the mysteries of the outer heliosphere,nearby interstellar space,and their interactions.This paper gives a brief introduction to the International Lunar Research Station program and the Interstellar Express mission.
基金Project supported by the National Natural Science Foundation of China.
文摘Since 1958 when Parker predicted the existence of solar wind plasma in the interplanetary space, its source regions and acceleration mechanisms have been the problems presented to space physicists. We obtained some results for average 2-D large scale structures of solar wind mass flux output near the sun by means of a combination study of the interplanetary scintillation (IPS) observations and the K-coronameter data in 1983 and have compared them with the photospheric magnetic field observations for the
基金supported by the Strategic Priority Program of Chinese Academy of Sciences (CAS)(Grant Nos. XDA15017300 and XDB41000000)the Youth Innovation Promotion Association CAS(Grant No. 2020295)。
文摘The Solar Ring mission, a concept to monitor the Sun and inner heliosphere from multiple perspectives, has been funded for prephase study by the Strategic Priority Program of Chinese Academy of Sciences in space sciences. The Solar Ring is comprised of 6 spacecraft, grouped in three pairs, moving around the Sun in an elliptical orbit in the ecliptic plane. The mission costs,including launch fee, deep-space maneuvers, and deployment time of the ring, are highly relevant to the working orbit, deepspace transfer, and phase angle within a group. The preliminary mission profile is analyzed and designed in this paper. The launch way, two spacecraft with one rocket, is adopted. The deployment time, phasing maneuvers, and C_(3) of launch energy are evaluated for the elliptical orbits with the perihelion between 0.7 and 0.9 AU using the rockets of Long March(LM) 3A and 3B.Numerical simulations show two candidate trajectories: fast deployment within 4 years by LM-3B, medium deployment more than 6 years by cheaper rocket of LM-3A. In order to obtain both fast deployment and low launch cost, another orbit profile is proposed by shortening the phase angle within a group. The suggested working orbits and the corresponding costs of launch,deployment time, and phasing maneuvers will strongly support the science objectives.
基金Supported in China by National Natural Science Foundation(NSFC)(12047576,U2031101,11475141)the National Key R&D Program of China(2018YFA0404201,2018YFA0404202)in Thailand by the Thailand Science Research and Innovation(RTA6280002)。
文摘In the following sub-sections,studies of solar-heliospheric effects on cosmic rays,investigating a possible link between cosmic ray flux and Earth’s climate,and detection of MeV-rangeγ-rays from thunderstorms with the data from LHAASO will be discussed;geophysical research with environmental neutrons will be introduced,and some Monte Carlo simulation results about effects of thunderstorm electric fields on LHAASO observations of cosmic rays will be given.