Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hype...Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.展开更多
Research activities of nuclear physics at Radioactive Isotope Beam Factory over 10 years are reviewed and future directions are also discussed. Conceptual ideas in designing the facility as well as experimental device...Research activities of nuclear physics at Radioactive Isotope Beam Factory over 10 years are reviewed and future directions are also discussed. Conceptual ideas in designing the facility as well as experimental devices are introduced. Special emphasis is given to highlighted results obtained at RIBF.展开更多
基金supported in part by the Major State Basic Research Development Program in China(Nos.2014CB845401 and2015CB856904)the National Natural Science Foundation of China(Nos.11421505,11520101004,11275250,11322547 and U1232206)Key Program of CAS for the Frontier Science(No.QYZDJ-SSW-SLH002)
文摘Heavy-ion collisions are powerful tools for studying hypernuclear physics.We develop a dynamical coalescence model coupled with an ART model(version1.0) to study the production rates of light nuclear clusters and hypernuclei in heavy-ion reactions,for instance,the deuteron(d),triton(t),helium(~3He),and hypertriton(_A^3H)in minimum bias(0-80%centrality)~6Li+^(12)C reactions at beam energy of 3.5A GeV.The penalty factor for light clusters is extracted from the yields,and the distributions of 0 angle of particles,which provide direct suggesetions about the location of particle detectors in the near future facility-High Intensity heavy-ion Accelerator Facility(HIAF) are investigated.Our calculation demonstrates that HIAF is suitable for studying hypernuclear physics.
文摘Research activities of nuclear physics at Radioactive Isotope Beam Factory over 10 years are reviewed and future directions are also discussed. Conceptual ideas in designing the facility as well as experimental devices are introduced. Special emphasis is given to highlighted results obtained at RIBF.