针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO--DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最...针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO--DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最差差分扰动策略更新最差个体的位置,以强化其搜索能力;然后,采用一种多层差分扰动策略更新一般个体的位置,以强化多层个体之间的信息交流,并提高搜索能力;最后,针对原更新模型在搜索初期获得有效解概率低的问题,提出一种基于维的差分扰动策略更新其他个体的位置。在大量CEC2017复杂函数上的实验结果表明,与HBO相比,DDHBO在96.67%的函数上具有更好的优化性能,更少的平均运行时间(3.4450s);与WRBBO(Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization)、DEBBO(Differential Evolution and Biogeography-Based Optimization)和HGWOP(Hybrid PSO and Grey Wolf Optimizer)等先进算法相比,DDHBO也具有显著的优势。展开更多
常见的聚类方法存在对初始点敏感和易陷入局部最优的不足,为此提出了一种改进HBO的聚类方法。首先,提出一种改进的HBO,即扰动替换的HBO(disturbance and replacement HBO,DRHBO)克服其不足,即采用一种随机维度值替换策略和高斯扰动机制...常见的聚类方法存在对初始点敏感和易陷入局部最优的不足,为此提出了一种改进HBO的聚类方法。首先,提出一种改进的HBO,即扰动替换的HBO(disturbance and replacement HBO,DRHBO)克服其不足,即采用一种随机维度值替换策略和高斯扰动机制用于HBO中最优个体的状态更新,解决HBO搜索效率低的问题;提出一种正弦差分扰动策略,以突破当前个体仅与直接领导和同事进行交流的限制,从而增强搜索能力;将随机维度值替换和随机差分扰动策略融合,用于HBO中前期个体状态更新以避免其产生无效解。其次,提出一种DRHBO聚类方法,并运用到宫颈细胞数据集上以获得更好的聚类效果。大量、不同类别和不同样本的宫颈细胞数据集实验结果表明,与HBO及其改进算法和其他最先进算法相比,DRHBO的优化性能更好、稳定性更强且效率更高。DRHBO聚类方法更适应于宫颈细胞数据集。展开更多
文摘针对堆优化算法(HBO)在解决复杂问题时存在搜索能力不足和搜索效率低等缺陷,提出一种差分扰动的HBO--DDHBO。首先,提出一种随机差分扰动策略更新最优个体的位置,以解决HBO没有对其更新从而导致的搜索效率低的问题;其次,使用一种最优最差差分扰动策略更新最差个体的位置,以强化其搜索能力;然后,采用一种多层差分扰动策略更新一般个体的位置,以强化多层个体之间的信息交流,并提高搜索能力;最后,针对原更新模型在搜索初期获得有效解概率低的问题,提出一种基于维的差分扰动策略更新其他个体的位置。在大量CEC2017复杂函数上的实验结果表明,与HBO相比,DDHBO在96.67%的函数上具有更好的优化性能,更少的平均运行时间(3.4450s);与WRBBO(Worst opposition learning and Random-scaled differential mutation Biogeography-Based Optimization)、DEBBO(Differential Evolution and Biogeography-Based Optimization)和HGWOP(Hybrid PSO and Grey Wolf Optimizer)等先进算法相比,DDHBO也具有显著的优势。
文摘常见的聚类方法存在对初始点敏感和易陷入局部最优的不足,为此提出了一种改进HBO的聚类方法。首先,提出一种改进的HBO,即扰动替换的HBO(disturbance and replacement HBO,DRHBO)克服其不足,即采用一种随机维度值替换策略和高斯扰动机制用于HBO中最优个体的状态更新,解决HBO搜索效率低的问题;提出一种正弦差分扰动策略,以突破当前个体仅与直接领导和同事进行交流的限制,从而增强搜索能力;将随机维度值替换和随机差分扰动策略融合,用于HBO中前期个体状态更新以避免其产生无效解。其次,提出一种DRHBO聚类方法,并运用到宫颈细胞数据集上以获得更好的聚类效果。大量、不同类别和不同样本的宫颈细胞数据集实验结果表明,与HBO及其改进算法和其他最先进算法相比,DRHBO的优化性能更好、稳定性更强且效率更高。DRHBO聚类方法更适应于宫颈细胞数据集。