In this paper,we extend fermions tunneling radiation to the case of five-dimensional charged black holes by introducing a set of appropriate matrices γμ for general covariant Dirac equation of 1/2 spin charged Dirac...In this paper,we extend fermions tunneling radiation to the case of five-dimensional charged black holes by introducing a set of appropriate matrices γμ for general covariant Dirac equation of 1/2 spin charged Dirac particles in the electromagnetic field.It is expected that our result can strengthen the validity and power of the tunneling method.We take the charged Gdel black holes in minimal five-dimensional gauged supergravity for example in order to present a reasonable extension of the tunneling method.As a result,we get fermions tunneling probability of the black hole and the Hawking temperature near the event horizon.展开更多
There is no term for pressure ( P∇V) in the first law of black hole thermodynamics. To address this question, we study the first law of black hole thermodynamics and derive an expression for it. We report that this pr...There is no term for pressure ( P∇V) in the first law of black hole thermodynamics. To address this question, we study the first law of black hole thermodynamics and derive an expression for it. We report that this pressure corresponds to the Hawking temperature and is inversely proportional to the quartic of the Schwarzschild radius. It implies that a lighter and smaller black hole exerts more pressure on its surrounding environment. It might shed light on the other thermodynamic aspects of the black hole.展开更多
The study of quantum thermal effect of non-static black hole is generalized to the space-time with coordinate (t, r) as variables. Tortoise coordinate equations which are different from not only static space-time but ...The study of quantum thermal effect of non-static black hole is generalized to the space-time with coordinate (t, r) as variables. Tortoise coordinate equations which are different from not only static space-time but also the non-statie space-time described by advanced-Eddington coordinate v have been chosen. Under the condition that the effect of Hawking evaporation is considered, the temperature of black hole and the location of horizon are shown. The results indicate that Hawking radiation temperature can be regarded as a compensating effect under the time-scale transformation.展开更多
The surface gravity of Schwarzschild black hole can be quantized from the test particle moving around different energy states analog to the Bohr's atomic model. We have quantized the Hawking temperature and entrop...The surface gravity of Schwarzschild black hole can be quantized from the test particle moving around different energy states analog to the Bohr's atomic model. We have quantized the Hawking temperature and entropy of Schwarzschild black hole from quantization of surface gravity. We also have shown that the change of entropy reduces to zero when the boundary shrinks to very small size.展开更多
Stephen Hawking gave a formula for the temperature of black holes as given by . Some of the black holes have their spinning velocity from 50% to 99% of the velocity of light. Due to this velocity, the mass of black ho...Stephen Hawking gave a formula for the temperature of black holes as given by . Some of the black holes have their spinning velocity from 50% to 99% of the velocity of light. Due to this velocity, the mass of black holes will vary which cause the variation in the temperature of black holes. In the present research article, we have applied the variation of mass with velocity to obtain the rate of change in temperature of the black holes with respect to velocity. We have also calculated their values for super dense stars like black holes existing in XRBs and AGN and concluded that for super dense stars like black holes of lower velocity as well as the velocity comparable to the velocity of light, the rate of change in temperature with respect to velocity is directly proportional to their velocities. This work will help us to find out the variation in temperature of different black holes spinning with different velocity percentage related to light speed and can be used as the references for other research works.展开更多
Based on the generalized uncertainty principle (GUP), the researchers find that the quantum gravity affects the Klein-Gordon equation exactly. Hence, the Klein-Gordon equation which is corrected by GUP will be more su...Based on the generalized uncertainty principle (GUP), the researchers find that the quantum gravity affects the Klein-Gordon equation exactly. Hence, the Klein-Gordon equation which is corrected by GUP will be more suitable on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the GHS black hole is obtained. After analyzing this result, we find out that the Hawking temperature is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we infer that the Hawking radiation will be stopped, and the remnants of black holes exist naturally.展开更多
The original formula to calculate the tunneling rate through event horizons is apparently dependent on the type of coordinates used. In this paper, we propose an invariant expression under canonical transformations to...The original formula to calculate the tunneling rate through event horizons is apparently dependent on the type of coordinates used. In this paper, we propose an invariant expression under canonical transformations to study the tunneling effect. Moreover, the problem of factor 2 is solved naturally. As an application of this expression, we obtain the same tunneling rate both in the Schwarzschild and the Painlev6 coordinates. It is shown that once the suitable formula to calculate tunneling rate is correctly identified, the tunneling method is manifestly covariant.展开更多
This paper is devoted to the investigation the fermion tunneling radiation of squashed black holes in the G6del universe and charged Kaluza-Klein space-time. For black holes with different dimensions, establishing a s...This paper is devoted to the investigation the fermion tunneling radiation of squashed black holes in the G6del universe and charged Kaluza-Klein space-time. For black holes with different dimensions, establishing a set of appropriate matrices γμ for the general covariant Dirac equation plays an important role in the semi-classical tunneling method. By constructing two sets of γμ matrices, we have successfully derived the tunneling probability and Hawking temperature of the black holes.展开更多
基金supported by the Natural Science Foundation of Liaoning Province,China (Grant No. 2009A646)
文摘In this paper,we extend fermions tunneling radiation to the case of five-dimensional charged black holes by introducing a set of appropriate matrices γμ for general covariant Dirac equation of 1/2 spin charged Dirac particles in the electromagnetic field.It is expected that our result can strengthen the validity and power of the tunneling method.We take the charged Gdel black holes in minimal five-dimensional gauged supergravity for example in order to present a reasonable extension of the tunneling method.As a result,we get fermions tunneling probability of the black hole and the Hawking temperature near the event horizon.
文摘There is no term for pressure ( P∇V) in the first law of black hole thermodynamics. To address this question, we study the first law of black hole thermodynamics and derive an expression for it. We report that this pressure corresponds to the Hawking temperature and is inversely proportional to the quartic of the Schwarzschild radius. It implies that a lighter and smaller black hole exerts more pressure on its surrounding environment. It might shed light on the other thermodynamic aspects of the black hole.
基金Project supported by the National Natural Science Foundation of China
文摘The study of quantum thermal effect of non-static black hole is generalized to the space-time with coordinate (t, r) as variables. Tortoise coordinate equations which are different from not only static space-time but also the non-statie space-time described by advanced-Eddington coordinate v have been chosen. Under the condition that the effect of Hawking evaporation is considered, the temperature of black hole and the location of horizon are shown. The results indicate that Hawking radiation temperature can be regarded as a compensating effect under the time-scale transformation.
文摘The surface gravity of Schwarzschild black hole can be quantized from the test particle moving around different energy states analog to the Bohr's atomic model. We have quantized the Hawking temperature and entropy of Schwarzschild black hole from quantization of surface gravity. We also have shown that the change of entropy reduces to zero when the boundary shrinks to very small size.
文摘Stephen Hawking gave a formula for the temperature of black holes as given by . Some of the black holes have their spinning velocity from 50% to 99% of the velocity of light. Due to this velocity, the mass of black holes will vary which cause the variation in the temperature of black holes. In the present research article, we have applied the variation of mass with velocity to obtain the rate of change in temperature of the black holes with respect to velocity. We have also calculated their values for super dense stars like black holes existing in XRBs and AGN and concluded that for super dense stars like black holes of lower velocity as well as the velocity comparable to the velocity of light, the rate of change in temperature with respect to velocity is directly proportional to their velocities. This work will help us to find out the variation in temperature of different black holes spinning with different velocity percentage related to light speed and can be used as the references for other research works.
文摘Based on the generalized uncertainty principle (GUP), the researchers find that the quantum gravity affects the Klein-Gordon equation exactly. Hence, the Klein-Gordon equation which is corrected by GUP will be more suitable on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the GHS black hole is obtained. After analyzing this result, we find out that the Hawking temperature is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we infer that the Hawking radiation will be stopped, and the remnants of black holes exist naturally.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2011202129)
文摘The original formula to calculate the tunneling rate through event horizons is apparently dependent on the type of coordinates used. In this paper, we propose an invariant expression under canonical transformations to study the tunneling effect. Moreover, the problem of factor 2 is solved naturally. As an application of this expression, we obtain the same tunneling rate both in the Schwarzschild and the Painlev6 coordinates. It is shown that once the suitable formula to calculate tunneling rate is correctly identified, the tunneling method is manifestly covariant.
文摘This paper is devoted to the investigation the fermion tunneling radiation of squashed black holes in the G6del universe and charged Kaluza-Klein space-time. For black holes with different dimensions, establishing a set of appropriate matrices γμ for the general covariant Dirac equation plays an important role in the semi-classical tunneling method. By constructing two sets of γμ matrices, we have successfully derived the tunneling probability and Hawking temperature of the black holes.