We report on second harmonic generation(SHG) in on-chip high-Q(>105) lithium niobate(Li Nb O3, LN) microresonators fabricated by femtosecond laser micromachining. We examine the efficiency of SHG with either a cont...We report on second harmonic generation(SHG) in on-chip high-Q(>105) lithium niobate(Li Nb O3, LN) microresonators fabricated by femtosecond laser micromachining. We examine the efficiency of SHG with either a continuous-wave(CW) or an ultrashort pulsed pump laser. The normalized conversion efficiencies of SHG obtained with the CW and pulsed pump lasers are measured to be 1.35×10?5 m W?1 and 2.30×10?6 m W?1, respectively.展开更多
Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-at...Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms.However,high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics.All-dielectric metasurfaces,supporting both electric and magnetic Mie-type resonances in their nanostructures,have appeared as a promising alternative to nonlinear plasmonics.High-index dielectric nanostructures,allowing additional magnetic resonances,can induce magnetic nonlinear effects,which,along with electric nonlinearities,increase the nonlinear conversion efficiency.In addition,low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities,resulting in a considerable enhancement of the nonlinear processes.We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces,including the role of Mie modes,Fano resonances,and anapole moments for harmonic generation,wave mixing,and ultrafast optical switching.Furthermore,we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces.We discuss techniques to realize alldielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.展开更多
High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or micro...High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.展开更多
Nonlinear holography has been identified as a vital platform for optical multiplexing holography because of the appearance of new optical frequencies.However,due to nonlinear wave coupling in nonlinear optical process...Nonlinear holography has been identified as a vital platform for optical multiplexing holography because of the appearance of new optical frequencies.However,due to nonlinear wave coupling in nonlinear optical processes,the nonlinear harmonic field is coupled with the input field,laying a fundamental barrier to independent control of the interacting fields for holography.We propose and experimentally demonstrate high-dimensional orbital angular momentum(OAM)multiplexing nonlinear holography to overcome this problem.By dividing the wavefront of the fundamental wave into different orthogonal OAM channels,multiple OAM and polarization-dependent holographic images in both the fundamental wave and second-harmonic wave have been reconstructed independently in the spatial frequency domain through a type-II second harmonic generation process.Moreover,this method can be easily extended to cascadedχ2 nonlinear optical processes for multiplexing in more wavelength channels,leading to potential applications in multicasting in optical communications,multiwavelength display,multidimensional optical storage,anticounterfeiting,and optical encryption.展开更多
Ultrabroadband laser sources are highly desirable in a wide variety of modern science disciplines ranging from physics,chemistry and materials science to information communications and processing.Here we present the d...Ultrabroadband laser sources are highly desirable in a wide variety of modern science disciplines ranging from physics,chemistry and materials science to information communications and processing.Here we present the design and fabrication of a chirped periodically poled lithium niobate(CPPLN)nonlinear photonic crystal that supports multiple orders of quasiphase matching with finite bandwidth and allows for the simultaneous broadband generation of second and third harmonics with high conversion efficiency.Moreover,the chirp rate has a significant influence on the conversion efficiency and bandwidth.The CPPLN scheme offers a promising approach for the construction of short-wavelength laser sources and enables the generation of the three primary colors—red,green and blue—from a single crystal,which may have potential applications in large-screen laser displays.展开更多
A key concept underlying the specific functionalities of metasurfaces is the use of constituent components to shape the wavefront of the light on demand.Metasurfaces are versatile,novel platforms for manipulating the ...A key concept underlying the specific functionalities of metasurfaces is the use of constituent components to shape the wavefront of the light on demand.Metasurfaces are versatile,novel platforms for manipulating the scattering,color,phase,or intensity of light.Currently,one of the typical approaches for designing a metasurface is to optimize one or two variables among a vast number of fixed parameters,such as various materials’properties and coupling effects,as well as the geometrical parameters.Ideally,this would require multidimensional space optimization through direct numerical simulations.Recently,an alternative,popular approach allows for reducing the computational cost significantly based on a deep-learning-assisted method.We utilize a deep-learning approach for obtaining high-quality factor(high-Q)resonances with desired characteristics,such as linewidth,amplitude,and spectral position.We exploit such high-Q resonances for enhancedlight–matter interaction in nonlinearoptical metasurfaces and optomechanical vibrations,simultaneously.We demonstrate that optimized metasurfaces achieve up to 400-fold enhancement of the third-harmonic generation;at the same time,they also contribute to 100-fold enhancement of the amplitude of optomechanical vibrations.This approach can be further used to realize structures with unconventional scattering responses.展开更多
提出了基于通用功率变换器的交直流混合配电网系统架构概念,在解决传统交流配电网电能质量问题同时,满足直流配电网发展需求。首先提出了一种结合电压平衡控制器(VBC)和四桥臂型三相四线制电压源变换器(VBC)的新型UPC整体系统结构,并给...提出了基于通用功率变换器的交直流混合配电网系统架构概念,在解决传统交流配电网电能质量问题同时,满足直流配电网发展需求。首先提出了一种结合电压平衡控制器(VBC)和四桥臂型三相四线制电压源变换器(VBC)的新型UPC整体系统结构,并给出一种基于交流电流跟踪补偿的并网VSC和基于恒定直流电流脉冲触发模式的VBC整体协调控制策略。最后通过搭建75 k W仿真实验系统验证了UPC在直流配电、分布式电源直流并网和交流配电网电能质量治理等方面性能的有效性。展开更多
The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured l...The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.展开更多
The process of high harmonic generation(HHG)enables the development of table-top sources of coherent extreme ultraviolet(XUV)light.Although these are now matured sources,they still mostly rely on bulk laser technology...The process of high harmonic generation(HHG)enables the development of table-top sources of coherent extreme ultraviolet(XUV)light.Although these are now matured sources,they still mostly rely on bulk laser technology that limits the attainable repetition rate to the low kilohertz regime.Moreover,many of the emerging applications of such light sources(e.g.,photoelectron spectroscopy and microscopy,coherent diffractive imaging,or frequency metrology in the XUV spectral region)require an increase in the repetition rate.Ideally,these sources are operated with a multi-MHz repetition rate and deliver a high photon flux simultaneously.So far,this regime has been solely addressed using passive enhancement cavities together with low energy and high repetition rate lasers.Here,a novel route with significantly reduced complexity(omitting the requirement of an external actively stabilized resonator)is demonstrated that achieves the previously mentioned demanding parameters.A krypton-filled Kagome photonic crystal fiber is used for efficient nonlinear compression of 9 μJ,250 fs pulses leading to,7 μJ,31 fs pulses at 10.7 MHz repetition rate.The compressed pulses are used for HHG in a gas jet.Particular attention is devoted to achieving phase-matched(transiently)generation yielding.10^(13) photons s^(-1)(.50 μW)at 27.7 eV.This new spatially coherent XUV source improved the photon flux by four orders of magnitude for direct multi-MHZ experiments,thus demonstrating the considerable potential of this source.展开更多
基金supported by the National Key Basic Research Program of China(Grant No.2014CB921300)the National Natural Science Foundation of China(Grant Nos.61275205,11174305 and 61205209)the Fundamental Research Funds for the Central Universities
文摘We report on second harmonic generation(SHG) in on-chip high-Q(>105) lithium niobate(Li Nb O3, LN) microresonators fabricated by femtosecond laser micromachining. We examine the efficiency of SHG with either a continuous-wave(CW) or an ultrashort pulsed pump laser. The normalized conversion efficiencies of SHG obtained with the CW and pulsed pump lasers are measured to be 1.35×10?5 m W?1 and 2.30×10?6 m W?1, respectively.
基金This project received funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.724306)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)(No.231447078-TRR142).
文摘Free from phase-matching constraints,plasmonic metasurfaces have contributed significantly to the control of optical nonlinearity and enhancement of nonlinear generation efficiency by engineering subwavelength meta-atoms.However,high dissipative losses and inevitable thermal heating limit their applicability in nonlinear nanophotonics.All-dielectric metasurfaces,supporting both electric and magnetic Mie-type resonances in their nanostructures,have appeared as a promising alternative to nonlinear plasmonics.High-index dielectric nanostructures,allowing additional magnetic resonances,can induce magnetic nonlinear effects,which,along with electric nonlinearities,increase the nonlinear conversion efficiency.In addition,low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities,resulting in a considerable enhancement of the nonlinear processes.We discuss the current state of the art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces,including the role of Mie modes,Fano resonances,and anapole moments for harmonic generation,wave mixing,and ultrafast optical switching.Furthermore,we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces.We discuss techniques to realize alldielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from complementary metal–oxide–semiconductor-compatible materials.
文摘High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
基金This work was supported by the National Key R&D Program of China(2016YFA0302500 , 2017YFA0303703)the National Natural Science Foundation of China(NSFC)(91950206 , 11874213)+2 种基金the Fundamental Research Funds for the Central Universities(1480605201)M.G.acknowledges the funding support from the Zhangjiang National Innovation Demonstration Zone(ZJ2019-ZD-005)X.F.acknowledges the funding support by Shanghai Science and Technology Development Funds(20QA1404100).
文摘Nonlinear holography has been identified as a vital platform for optical multiplexing holography because of the appearance of new optical frequencies.However,due to nonlinear wave coupling in nonlinear optical processes,the nonlinear harmonic field is coupled with the input field,laying a fundamental barrier to independent control of the interacting fields for holography.We propose and experimentally demonstrate high-dimensional orbital angular momentum(OAM)multiplexing nonlinear holography to overcome this problem.By dividing the wavefront of the fundamental wave into different orthogonal OAM channels,multiple OAM and polarization-dependent holographic images in both the fundamental wave and second-harmonic wave have been reconstructed independently in the spatial frequency domain through a type-II second harmonic generation process.Moreover,this method can be easily extended to cascadedχ2 nonlinear optical processes for multiplexing in more wavelength channels,leading to potential applications in multicasting in optical communications,multiwavelength display,multidimensional optical storage,anticounterfeiting,and optical encryption.
基金This work was supported by the 973 Program of China(No.2011CB922002 and No.2013CB632704)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.Y1 V2013 L11).
文摘Ultrabroadband laser sources are highly desirable in a wide variety of modern science disciplines ranging from physics,chemistry and materials science to information communications and processing.Here we present the design and fabrication of a chirped periodically poled lithium niobate(CPPLN)nonlinear photonic crystal that supports multiple orders of quasiphase matching with finite bandwidth and allows for the simultaneous broadband generation of second and third harmonics with high conversion efficiency.Moreover,the chirp rate has a significant influence on the conversion efficiency and bandwidth.The CPPLN scheme offers a promising approach for the construction of short-wavelength laser sources and enables the generation of the three primary colors—red,green and blue—from a single crystal,which may have potential applications in large-screen laser displays.
基金supported by UNSW Scientia Fellowship and ARC Discovery Project(DP170103778)funding from ARC Discovery Early Career Research Fellowship(DE170100250)+1 种基金financial support from the Russian Foundation for Basic Research(Grants Nos.18-02-00381 and 19-02-00261)the Australian Research Council(DE19010043).
文摘A key concept underlying the specific functionalities of metasurfaces is the use of constituent components to shape the wavefront of the light on demand.Metasurfaces are versatile,novel platforms for manipulating the scattering,color,phase,or intensity of light.Currently,one of the typical approaches for designing a metasurface is to optimize one or two variables among a vast number of fixed parameters,such as various materials’properties and coupling effects,as well as the geometrical parameters.Ideally,this would require multidimensional space optimization through direct numerical simulations.Recently,an alternative,popular approach allows for reducing the computational cost significantly based on a deep-learning-assisted method.We utilize a deep-learning approach for obtaining high-quality factor(high-Q)resonances with desired characteristics,such as linewidth,amplitude,and spectral position.We exploit such high-Q resonances for enhancedlight–matter interaction in nonlinearoptical metasurfaces and optomechanical vibrations,simultaneously.We demonstrate that optimized metasurfaces achieve up to 400-fold enhancement of the third-harmonic generation;at the same time,they also contribute to 100-fold enhancement of the amplitude of optomechanical vibrations.This approach can be further used to realize structures with unconventional scattering responses.
文摘提出了基于通用功率变换器的交直流混合配电网系统架构概念,在解决传统交流配电网电能质量问题同时,满足直流配电网发展需求。首先提出了一种结合电压平衡控制器(VBC)和四桥臂型三相四线制电压源变换器(VBC)的新型UPC整体系统结构,并给出一种基于交流电流跟踪补偿的并网VSC和基于恒定直流电流脉冲触发模式的VBC整体协调控制策略。最后通过搭建75 k W仿真实验系统验证了UPC在直流配电、分布式电源直流并网和交流配电网电能质量治理等方面性能的有效性。
文摘The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.
基金This work was partly supported by the German Federal Ministry of Education and Research(BMBF)the European Research Council under the European Union’s Seventh Framework Programme(FP7/2007-2013)/ERC Grant Agreement No.240460Arno Klenke and Jan Rothhardt acknowledge financial support by the Helmholtz-Institute Jena.
文摘The process of high harmonic generation(HHG)enables the development of table-top sources of coherent extreme ultraviolet(XUV)light.Although these are now matured sources,they still mostly rely on bulk laser technology that limits the attainable repetition rate to the low kilohertz regime.Moreover,many of the emerging applications of such light sources(e.g.,photoelectron spectroscopy and microscopy,coherent diffractive imaging,or frequency metrology in the XUV spectral region)require an increase in the repetition rate.Ideally,these sources are operated with a multi-MHz repetition rate and deliver a high photon flux simultaneously.So far,this regime has been solely addressed using passive enhancement cavities together with low energy and high repetition rate lasers.Here,a novel route with significantly reduced complexity(omitting the requirement of an external actively stabilized resonator)is demonstrated that achieves the previously mentioned demanding parameters.A krypton-filled Kagome photonic crystal fiber is used for efficient nonlinear compression of 9 μJ,250 fs pulses leading to,7 μJ,31 fs pulses at 10.7 MHz repetition rate.The compressed pulses are used for HHG in a gas jet.Particular attention is devoted to achieving phase-matched(transiently)generation yielding.10^(13) photons s^(-1)(.50 μW)at 27.7 eV.This new spatially coherent XUV source improved the photon flux by four orders of magnitude for direct multi-MHZ experiments,thus demonstrating the considerable potential of this source.