Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat...Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.展开更多
The vibrations induced by railway traffic can affect the stability of structures, buildings and buried structures. To evaluate this impact, this study was carried out considering the case of the Regional Express Train...The vibrations induced by railway traffic can affect the stability of structures, buildings and buried structures. To evaluate this impact, this study was carried out considering the case of the Regional Express Train which will connect Dakar to Blaise Diagne International Airport. For that, the modeling software Plaxis dynamic [1], able to generate harmonic loads, is used and permitted to have a dynamic analysis and comparison between static and dynamic load for one passage of the train for 2.56 s. In the modeling, two behavior laws were used those of Mohr Coulomb for the layers of soil, embankments and the form layer, and then the linear elastic model for the rest of the elements. The results obtained showed extreme vertical displacements 40.18 mm for the building and when no load is applied on the track, there was 40.24 mm for a static load, and 40.17 mm for a dynamic load. Also, it was observed for the track a displacement of 33.73 mm for a static load and 19.83 mm for a dynamic load. However, further studies are necessary to take into account the permanent deformation after an accurate cycle of train passage in order to better evaluate the railway traffic impact.展开更多
Two marine structures arranged side by side with a narrow gap may suffer from violent free-surface resonance,which would cause green water on deck,dramatically raise hydrodynamic loads on structures and seriously thre...Two marine structures arranged side by side with a narrow gap may suffer from violent free-surface resonance,which would cause green water on deck,dramatically raise hydrodynamic loads on structures and seriously threaten the operation safety.The CFD-based open-sourced software,OpenFOAM?,is employed to simulate the twodimensional fluid resonance inside a narrow gap between a fixed box and a vertical wall induced by regular waves with different wave heights.The topographies with various plane slopes are placed in front of the wall.The focus of this article is on the influences of the incident wave height and the topographic slope on the nonlinear characteristics of various hydrodynamic parameters(including the wave height in the gap,the vertical wave force,and the horizontal wave force on the box)during gap resonance.The ratios of their high-order to the corresponding 1 st-order components under different sets of the incident wave height and the topographic slope are analyzed.It is found that the relative importance of all the high-order components increases gradually with the incident wave height for all the three parameters.The topographic influence on them closely depends on the type of the parameters and the incident wave height.In addition,the occurrence of the 2 nd-order gap resonance phenomenon can cause the 2 nd-order wave height and horizontal force to be significantly larger than the corresponding 1 st-order components.展开更多
The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave nu...The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave number domain. Based on the obtained equivalent stiffness, the frequency wave number domain solution of the beam-half-space system is obtained by the compatibility condition between the beam and the half space. Critical velocity of harmonic moving loads along an infinite Euler-Bernoulli elastic beam is determined. The time domain solutions for the beam and the saturated poro-elastic half space are derived by means of the inverse Fourier transformation method. Also, the influences of the load speed, frequency and material parameters of the poro-elastic half space on the responses of the beam are investigated. Numerical results show that the frequency corresponding to the maximum deflection and bending moment increases with increasing load speed. Moreover, it can be seen that at higher frequencies, the dynamic response is independent of the load speed. The present results also show that for a beam overlying a saturated poro-elastic half space, there still exist critical velocities even when the load velocity is larger than the shear wave speed of the medium.展开更多
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho...The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.展开更多
文摘Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.
文摘The vibrations induced by railway traffic can affect the stability of structures, buildings and buried structures. To evaluate this impact, this study was carried out considering the case of the Regional Express Train which will connect Dakar to Blaise Diagne International Airport. For that, the modeling software Plaxis dynamic [1], able to generate harmonic loads, is used and permitted to have a dynamic analysis and comparison between static and dynamic load for one passage of the train for 2.56 s. In the modeling, two behavior laws were used those of Mohr Coulomb for the layers of soil, embankments and the form layer, and then the linear elastic model for the rest of the elements. The results obtained showed extreme vertical displacements 40.18 mm for the building and when no load is applied on the track, there was 40.24 mm for a static load, and 40.17 mm for a dynamic load. Also, it was observed for the track a displacement of 33.73 mm for a static load and 19.83 mm for a dynamic load. However, further studies are necessary to take into account the permanent deformation after an accurate cycle of train passage in order to better evaluate the railway traffic impact.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51911530205 and 51809039)+5 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20201455 and BK20210885)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.20KJD170005)the Qing Lan Project of Jiangsu Universitiespartially supported by UK EPSRC(Grant No.EP/T026782/1)the Royal Academy of Engineering(Grant No.UK-CIAPP/73)the Royal Society(Grant No.IEC\NSFC\181321)。
文摘Two marine structures arranged side by side with a narrow gap may suffer from violent free-surface resonance,which would cause green water on deck,dramatically raise hydrodynamic loads on structures and seriously threaten the operation safety.The CFD-based open-sourced software,OpenFOAM?,is employed to simulate the twodimensional fluid resonance inside a narrow gap between a fixed box and a vertical wall induced by regular waves with different wave heights.The topographies with various plane slopes are placed in front of the wall.The focus of this article is on the influences of the incident wave height and the topographic slope on the nonlinear characteristics of various hydrodynamic parameters(including the wave height in the gap,the vertical wave force,and the horizontal wave force on the box)during gap resonance.The ratios of their high-order to the corresponding 1 st-order components under different sets of the incident wave height and the topographic slope are analyzed.It is found that the relative importance of all the high-order components increases gradually with the incident wave height for all the three parameters.The topographic influence on them closely depends on the type of the parameters and the incident wave height.In addition,the occurrence of the 2 nd-order gap resonance phenomenon can cause the 2 nd-order wave height and horizontal force to be significantly larger than the corresponding 1 st-order components.
基金the National Natural Science Foundatio of China (No. 50679041)the Foundation of Jiangx Educational Committee (No. GJJ09367)
文摘The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave number domain. Based on the obtained equivalent stiffness, the frequency wave number domain solution of the beam-half-space system is obtained by the compatibility condition between the beam and the half space. Critical velocity of harmonic moving loads along an infinite Euler-Bernoulli elastic beam is determined. The time domain solutions for the beam and the saturated poro-elastic half space are derived by means of the inverse Fourier transformation method. Also, the influences of the load speed, frequency and material parameters of the poro-elastic half space on the responses of the beam are investigated. Numerical results show that the frequency corresponding to the maximum deflection and bending moment increases with increasing load speed. Moreover, it can be seen that at higher frequencies, the dynamic response is independent of the load speed. The present results also show that for a beam overlying a saturated poro-elastic half space, there still exist critical velocities even when the load velocity is larger than the shear wave speed of the medium.
文摘The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.