Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
In the paper we introduce an idea of harmonic functions with correlated coefficients which generalize the ideas of harmonic functions with negative coefficients introduced by Silverman and harmonic functions with vary...In the paper we introduce an idea of harmonic functions with correlated coefficients which generalize the ideas of harmonic functions with negative coefficients introduced by Silverman and harmonic functions with varying coefficients defined by Jahangiri and Silverman. Next we define classes of harmonic functions with correlated coefficients in terms of generalized Dziok-Srivastava operator. By using extreme points theory, we obtain estimations of classical convex functionals on the defined classes of functions. Some applications of the main results are also considered.展开更多
In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's generalized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent resul...In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's generalized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent results are also discussed.展开更多
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
基金Supported by National Natural Science Foundation of China(Grant Nos.11801006 and 12071489).
文摘In this paper,by choosing some appropriate test functions,we prove the Weyl’s lemma for triharmonic functions based on the new type of mean value formulas.
基金supported by the Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge,University of Rzeszów
文摘In the paper we introduce an idea of harmonic functions with correlated coefficients which generalize the ideas of harmonic functions with negative coefficients introduced by Silverman and harmonic functions with varying coefficients defined by Jahangiri and Silverman. Next we define classes of harmonic functions with correlated coefficients in terms of generalized Dziok-Srivastava operator. By using extreme points theory, we obtain estimations of classical convex functionals on the defined classes of functions. Some applications of the main results are also considered.
文摘In this paper, some Wgh inequalities for univalent harmonic analytic functions defined by Wright's generalized hypergeometric (Wgh) functions to be in certain classes are observed and proved. Some consequent results are also discussed.