The topography of the Harlik Mountain has a strong impact on the formation of current arid climate in the Turpan-Hami Basin.However,it is still controversial if Harlik Mountain experienced significant exhumation durin...The topography of the Harlik Mountain has a strong impact on the formation of current arid climate in the Turpan-Hami Basin.However,it is still controversial if Harlik Mountain experienced significant exhumation during the Middle to Late Cenozoic according to the previous thermochronology studies.The features of the Oligocene to Miocene sediments in the foreland basin could provide productive information for resolving the debates.The peak ages of detrital apatite fission track analysis of the Oligocene–Miocene sandstone in the Turpan-Hami Basin are well comparable with the cooling age records of the Harlik Mountain rocks,indicating that the Oligocene–Miocene Taoshuyuanzi Formation in the basin was mostly derived from the Harlik Mountain.The stratigraphic sequence exhibits coarsening upward,reflecting that the source area was in a tectonically active period during the deposition process.Heavy mineral assemblages also suggest that the unstable minerals in the sediment increased significantly at the end of the deposition.Moreover,the proportion of apatite increased up-section,while the garnet content decreased significantly,indicating that the Carboniferous metamorphic rocks have been gradually eroded out and more intrusive rocks have been exposed to the surface.These observations suggest that the Harlik Mountain experienced exhumation during the Oligocene to Miocene,and the denudation depth afterward was probably less than 2.5 km according to the previously apatite(U-Th)/He data.The Oligocene–Miocene exhumation probably acted as one of the triggers for the heavy drought of the Turpan-Hami Basin during the Middle–Late Neogene.展开更多
基金funded by the National Natural Science Foundation of China(Nos.41972208,42172251).
文摘The topography of the Harlik Mountain has a strong impact on the formation of current arid climate in the Turpan-Hami Basin.However,it is still controversial if Harlik Mountain experienced significant exhumation during the Middle to Late Cenozoic according to the previous thermochronology studies.The features of the Oligocene to Miocene sediments in the foreland basin could provide productive information for resolving the debates.The peak ages of detrital apatite fission track analysis of the Oligocene–Miocene sandstone in the Turpan-Hami Basin are well comparable with the cooling age records of the Harlik Mountain rocks,indicating that the Oligocene–Miocene Taoshuyuanzi Formation in the basin was mostly derived from the Harlik Mountain.The stratigraphic sequence exhibits coarsening upward,reflecting that the source area was in a tectonically active period during the deposition process.Heavy mineral assemblages also suggest that the unstable minerals in the sediment increased significantly at the end of the deposition.Moreover,the proportion of apatite increased up-section,while the garnet content decreased significantly,indicating that the Carboniferous metamorphic rocks have been gradually eroded out and more intrusive rocks have been exposed to the surface.These observations suggest that the Harlik Mountain experienced exhumation during the Oligocene to Miocene,and the denudation depth afterward was probably less than 2.5 km according to the previously apatite(U-Th)/He data.The Oligocene–Miocene exhumation probably acted as one of the triggers for the heavy drought of the Turpan-Hami Basin during the Middle–Late Neogene.