Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish...Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H^(p1,q1)_A(Rn) and H^(p2,q2)_A(R^n) with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈(0, ∞], and also between H^(p,q1)_A(Rn) and H^(p,q2)_A(R^n) with p ∈(0, ∞)and 0 < q1 < q < q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H^(p,q)_A(R^n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H^(p,∞)_A(R^n) to the weak Lebesgue space L^(p,∞)(R^n)(or to H^p_A(R^n)) in the ln λcritical case, from H^(p,q)_A(R^n) to L^(p,q)(R^n)(or to H^(p,q)_A(R^n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H^(p,q)_A(R^n) to L^(p,∞)(R^n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.展开更多
Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article,...Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn).展开更多
In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bou...In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bounded from the dyadic Hardy- Lorentz space pH^-ra(X) to Lra(X) when X is isomorphic to a p-uniformly smooth space (1 〈p ≤ 2). And it is also bounded from Hra(X) to Lra(X) (0 〈 r 〈 ∞,0 〈 a≤oc) when X has Radon-Nikodym property. In addition, some weak-type inequalities are given.展开更多
In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lo...In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lorentz spaces are proved.展开更多
Let A be a general expansive matrix on Rn.The aims of this article are twofold.The first one is to give a survey on the recent developments of anisotropic Hardy-type function spaces on Rn,including anisotropic Hardy–...Let A be a general expansive matrix on Rn.The aims of this article are twofold.The first one is to give a survey on the recent developments of anisotropic Hardy-type function spaces on Rn,including anisotropic Hardy–Lorentz spaces,anisotropic variable Hardy spaces and anisotropic variable Hardy–Lorentz spaces as well as anisotropic Musielak–Orlicz Hardy spaces.The second one is to correct some errors and seal some gaps existing in the known articles.Some unsolved problems are also presented.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11571039, 11361020 and 11471042)
文摘Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H^(p1,q1)_A(Rn) and H^(p2,q2)_A(R^n) with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈(0, ∞], and also between H^(p,q1)_A(Rn) and H^(p,q2)_A(R^n) with p ∈(0, ∞)and 0 < q1 < q < q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H^(p,q)_A(R^n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H^(p,∞)_A(R^n) to the weak Lebesgue space L^(p,∞)(R^n)(or to H^p_A(R^n)) in the ln λcritical case, from H^(p,q)_A(R^n) to L^(p,q)(R^n)(or to H^(p,q)_A(R^n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H^(p,q)_A(R^n) to L^(p,∞)(R^n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.
基金supported by the National Natural Science Foundation of China(11571039 and 11671185)supported by the National Natural Science Foundation of China(11471042)
文摘Let p∈(0, 1], q∈(0, ∞] and A be a general expansive matrix on Rn. Let HAp,q (Rn) be the anisotropic Hardy-Lorentz spaces associated with A defined via the non-tangential grand maximal function. In this article, the authors characterize HAp,q(Rn) in terms of the Lusin-area function, the Littlewood-Paley g-function or the Littlewood-Paley gλ*-function via first establishing an anisotropic Fefferman-Stein vector-valued inequality in the Lorentz space Lp,q(Rn). All these characterizations are new even for the classical isotropic Hardy-Lorentz spaces on Rn. Moreover, the range of λ in the gλ*-function characterization of HAp,q (Rn) coincides with the best known one in the classical Hardy space Hp(Rn) or in the anisotropic Hardy space HAp (Rn).
基金supported by the National Natural Science Foundation of China (10371093)
文摘In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bounded from the dyadic Hardy- Lorentz space pH^-ra(X) to Lra(X) when X is isomorphic to a p-uniformly smooth space (1 〈p ≤ 2). And it is also bounded from Hra(X) to Lra(X) (0 〈 r 〈 ∞,0 〈 a≤oc) when X has Radon-Nikodym property. In addition, some weak-type inequalities are given.
基金supported by the National Natural Science Foundation of China(10871016)
文摘In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lorentz spaces are proved.
基金the Scientific Research Foundation of China University of Mining and Technology(Grant No.102519054)the German Research Foundation(DFG)(Grant No.Ha 2794/8-1)the National Natural Science Foundation of China(Grant Nos.11761131002,11971058 and 11671185).
文摘Let A be a general expansive matrix on Rn.The aims of this article are twofold.The first one is to give a survey on the recent developments of anisotropic Hardy-type function spaces on Rn,including anisotropic Hardy–Lorentz spaces,anisotropic variable Hardy spaces and anisotropic variable Hardy–Lorentz spaces as well as anisotropic Musielak–Orlicz Hardy spaces.The second one is to correct some errors and seal some gaps existing in the known articles.Some unsolved problems are also presented.