In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's typ...In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.展开更多
文摘In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.