This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating di...This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating distributed power sources.The paper proposes the first architecture for a multiterminal HVDC transmission system using the VSC technology.Its control strategy offers various functionalities that include controls for operation mode,start-up and shutdown,DC voltage,and station online re-connecting,which are significantly different from the control of point-to-point VSC-HVDC systems.The framework has not only been evaluated in real-time simulation studies,but has also been implemented onsite for the first time via the China Southern Grid's Nan'ao Multi-terminal VSCHVDC(VSC-MTDC)project.This paper gives a brief review of the current research and engineering achievements in this field,which includes four aspects:the architecture of the VSCMTDC system,the structure of the control and protection system,simulation verification tests setting,and the results of real-time hardware in hardware in loop(HIL)simulation studies and onsite tests.展开更多
This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore win...This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.展开更多
基金supported by the 863 National High Technology Research and Development Program of China(2011AA05AI02)China Southern Power Grid Company.
文摘This paper presents a framework of a multi-terminal HVDC transmission system and its multi-functional control strategy.The framework possesses the basic characteristics of the DC-grid and is suitable in integrating distributed power sources.The paper proposes the first architecture for a multiterminal HVDC transmission system using the VSC technology.Its control strategy offers various functionalities that include controls for operation mode,start-up and shutdown,DC voltage,and station online re-connecting,which are significantly different from the control of point-to-point VSC-HVDC systems.The framework has not only been evaluated in real-time simulation studies,but has also been implemented onsite for the first time via the China Southern Grid's Nan'ao Multi-terminal VSCHVDC(VSC-MTDC)project.This paper gives a brief review of the current research and engineering achievements in this field,which includes four aspects:the architecture of the VSCMTDC system,the structure of the control and protection system,simulation verification tests setting,and the results of real-time hardware in hardware in loop(HIL)simulation studies and onsite tests.
文摘This paper presents the power hardware in the loop(PHIL)validation of a feed forward DC voltage control scheme for the fault ride through(FRT)of voltage source converter(VSC)high voltage DC(HVDC)connected offshore wind power plants(WPPs).In the proposed FRT scheme,the WPP collector network AC voltage is actively controlled by considering both the DC voltage error and the AC current from the WPP AC collector system which ensures fast and robust FRT of the VSC HVDC connected offshore WPPs.The PHIL tests were carried out in order to verify the efficacy of the proposed feed forward DC voltage control scheme for enhancing the FRT capability of the VSC HVDC connected WPPs.The PHIL test results have demonstrated the proper control coordination between the offshore WPP and the WPP side VSC and the efficient FRT of the VSC HVDC connected WPPs.