Orderly mesoporous CuFe2O4spinel-type mixed oxide with high specific surface area was prepared successfully by a hard-template method in which KIT-6mesoporous silica was selected as the hard template.The KIT-6 hard te...Orderly mesoporous CuFe2O4spinel-type mixed oxide with high specific surface area was prepared successfully by a hard-template method in which KIT-6mesoporous silica was selected as the hard template.The KIT-6 hard template and CuFe2O4samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,X-ray fluorescence,transmission electron microscopy,scanning electron microscopy,nitrogen physisorption,and hydrogen-temperature programmed reduction.The KIT-6 hard template had perfect crystallization and ordered mesoporous structure with a probable pore distribution of about 9.1 nm,large enough to be filled by the spinel precursor.The mesoporous CuFe2O4spinel oxide synthesized inside the KIT-6 mesopores had a relatively small pore size(4.3 nm),orderly arrangement,and high specific area(194 m2/g).The catalytic activity of the mesoporous CuFe2O4was tested for the selective oxidation of ammonia to nitrogen.The conversion of ammonia reached nearly 100%at 300°C with a nitrogen selectivity as high as 96%.The nitrogen selectivity remained high with increasing temperature and even maintained a value of80%at 600°C.展开更多
以活性炭纤维为模板,用硬模板法合成钙钛矿材料Sr Mo O_4,并在Sr Mo O_4阳极上浸渍Gd_(0.2)Ce_(0.8)O_(1.9)(GDC),制备出GDC–Sr Mo O_4–YSZ复合阳极。分别以Sr Mo O_4–YSZ和GDC–Sr Mo O_4–YSZ为阳极,制备了固体氧化物燃料单电池,...以活性炭纤维为模板,用硬模板法合成钙钛矿材料Sr Mo O_4,并在Sr Mo O_4阳极上浸渍Gd_(0.2)Ce_(0.8)O_(1.9)(GDC),制备出GDC–Sr Mo O_4–YSZ复合阳极。分别以Sr Mo O_4–YSZ和GDC–Sr Mo O_4–YSZ为阳极,制备了固体氧化物燃料单电池,并测试了其电性能。探究了不同浸渍次序下,阳极的材料组成对电池发电性能的影响。结果表明,以CH4为燃料,工作温度为800℃时,Sr Mo O_4中浸渍GDC质量分数为50%,Sr Mo O_4与YSZ质量比为5:5的阳极材料,最大功率密度为317.15 m W/cm^2;Sr Mo O_4–YSZ中GDC浸渍量为50%时,单电池性能最佳,最大功率达到361.01 m W/cm^2。展开更多
Dopamine(DA), one type of mussel-inspired biological molecules with adhesive nature and corrosion inhibitor property, are often used to functionalize the surfaces of various materials. Herein, we report the applicatio...Dopamine(DA), one type of mussel-inspired biological molecules with adhesive nature and corrosion inhibitor property, are often used to functionalize the surfaces of various materials. Herein, we report the application of polydopamine(PDA) microcapsules as novel nanocontainers for the purpose, loading corrosion inhibitor(benzotriazole) in its shell structure, and then were embedded into epoxy coatings to provide self-healing and anti-corrosion protection for carbon steel. Fast release of benzotriazole in acidic environment caused by local corrosion and the chelating effect of PDA-Fe^(3+)can synergistically promote the formation of protective film on bare steel surface, which endows coatings with self-healing functionality. Electrochemical impedance spectroscopy(EIS), local electrochemical impedance spectroscopy(LEIS), and spray tests were conducted to evaluate the active inhibition and corrosion resistance of the loaded coatings. The scratched coating with incorporation of nanocontainers presented better protection performance, exhibiting increased Ro(oxide layer resistance) and R ct(charge transfer resistance) during initial immersion periods. The EIS tests in long-term immersion were also performed to confirm the anti-corrosion effect of composited coatings. These results demonstrated that benzotriazole-decorated PDA capsules dramatically enhanced the self-healing properties and anti-corrosion performance of epoxy coatings with the synergistic help of PDA and benzotriazole.展开更多
基金supported by the National Natural Science Foundation of China(21103005,21077007)the Natural Science Foundation of Beijing Municipality(KZ200610005004)+1 种基金the Discipline and Postgraduate Education Foundation(PXM2013_014204_07_000261 and 005000542513551)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(PHR201107104)~~
基金supported by the National High Technology Research and Development Program of China (2013AA065900)the National Natural Science Foundation of China (21177008,21121064)
文摘Orderly mesoporous CuFe2O4spinel-type mixed oxide with high specific surface area was prepared successfully by a hard-template method in which KIT-6mesoporous silica was selected as the hard template.The KIT-6 hard template and CuFe2O4samples were characterized by X-ray diffraction,X-ray photoelectron spectroscopy,X-ray fluorescence,transmission electron microscopy,scanning electron microscopy,nitrogen physisorption,and hydrogen-temperature programmed reduction.The KIT-6 hard template had perfect crystallization and ordered mesoporous structure with a probable pore distribution of about 9.1 nm,large enough to be filled by the spinel precursor.The mesoporous CuFe2O4spinel oxide synthesized inside the KIT-6 mesopores had a relatively small pore size(4.3 nm),orderly arrangement,and high specific area(194 m2/g).The catalytic activity of the mesoporous CuFe2O4was tested for the selective oxidation of ammonia to nitrogen.The conversion of ammonia reached nearly 100%at 300°C with a nitrogen selectivity as high as 96%.The nitrogen selectivity remained high with increasing temperature and even maintained a value of80%at 600°C.
文摘以活性炭纤维为模板,用硬模板法合成钙钛矿材料Sr Mo O_4,并在Sr Mo O_4阳极上浸渍Gd_(0.2)Ce_(0.8)O_(1.9)(GDC),制备出GDC–Sr Mo O_4–YSZ复合阳极。分别以Sr Mo O_4–YSZ和GDC–Sr Mo O_4–YSZ为阳极,制备了固体氧化物燃料单电池,并测试了其电性能。探究了不同浸渍次序下,阳极的材料组成对电池发电性能的影响。结果表明,以CH4为燃料,工作温度为800℃时,Sr Mo O_4中浸渍GDC质量分数为50%,Sr Mo O_4与YSZ质量比为5:5的阳极材料,最大功率密度为317.15 m W/cm^2;Sr Mo O_4–YSZ中GDC浸渍量为50%时,单电池性能最佳,最大功率达到361.01 m W/cm^2。
基金financially supported by the National Science Fund for Distinguished Young Scholars of China(No.51825505)the National Natural Science Foundation of China(No.51905278)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA13040601)the Special Research Funding from the Marine Biotechnology and Marine Engineering Discipline Group in Ningbo University。
文摘Dopamine(DA), one type of mussel-inspired biological molecules with adhesive nature and corrosion inhibitor property, are often used to functionalize the surfaces of various materials. Herein, we report the application of polydopamine(PDA) microcapsules as novel nanocontainers for the purpose, loading corrosion inhibitor(benzotriazole) in its shell structure, and then were embedded into epoxy coatings to provide self-healing and anti-corrosion protection for carbon steel. Fast release of benzotriazole in acidic environment caused by local corrosion and the chelating effect of PDA-Fe^(3+)can synergistically promote the formation of protective film on bare steel surface, which endows coatings with self-healing functionality. Electrochemical impedance spectroscopy(EIS), local electrochemical impedance spectroscopy(LEIS), and spray tests were conducted to evaluate the active inhibition and corrosion resistance of the loaded coatings. The scratched coating with incorporation of nanocontainers presented better protection performance, exhibiting increased Ro(oxide layer resistance) and R ct(charge transfer resistance) during initial immersion periods. The EIS tests in long-term immersion were also performed to confirm the anti-corrosion effect of composited coatings. These results demonstrated that benzotriazole-decorated PDA capsules dramatically enhanced the self-healing properties and anti-corrosion performance of epoxy coatings with the synergistic help of PDA and benzotriazole.