Two position-assisted fast handover schemes, scheme A and scheme B, for LTE-A system under very high mobility scenarios, are proposed, together with their performance evaluation. Scheme A is designed to reduce handove...Two position-assisted fast handover schemes, scheme A and scheme B, for LTE-A system under very high mobility scenarios, are proposed, together with their performance evaluation. Scheme A is designed to reduce handover delay by making handover preparation before handover starts. Scheme B aims at reducing unnecessary handovers and improving handover success rate, by calculating the geographically best target handover cell, which makes it easier for mobile terminals to access the target cell. A system level simulation is conducted to evaluate the performance of these two schemes. It is shown that, scheme A could reduce inter-site handover delay by about 50 ms, while scheme B could cut down nearly 50% of all handovers when time-to-trigger (TTT) is 0 ms. Besides, as TTT gets larger, Scheme B has much better success rate.展开更多
Mobility support to change the connection from one access point(AP)to the next(i.e.,handover)becomes one of the important issues in IEEE 802.11 wireless local area networks(WLANs).During handover,the channel scanning ...Mobility support to change the connection from one access point(AP)to the next(i.e.,handover)becomes one of the important issues in IEEE 802.11 wireless local area networks(WLANs).During handover,the channel scanning procedure,which aims to collect neighbor AP(NAP)information on all available channels,accounts for most of the delay time.To reduce the channel scanning procedure,a neighbor beacon frame transmission scheme(N-BTS)was proposed for a seamless handover.N-BTS can provide a seamless handover by removing the channel scanning procedure.However,N-BTS always requires operating overhead even if there are few mobile stations(MSs)for the handover.Therefore,this paper proposes a reinforcement learning-based handover scheme with neighbor beacon frame transmission(MAN-BTS)to properly consider the use of N-BTS.The optimization equation is defined to maximize the expected reward tofind the optimal policy and is solved using Q-learning.Simulation results show that the proposed scheme outperforms the comparison schemes in terms of the expected reward.展开更多
Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the dat...Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the data transmission should be paused during the hard handover process, it causes handover delay in mobile communication. The handover delay makes severe degradation in system performance when implemented in real-time applications such as IPTV and VoIP. The existing draft standard considers only the received signal strength when deciding handover initiation. However, the velocity factor also has an important influence on handover initiation and can not be neglected. To deal with these problems, this article proposes a velocity-adaptive handover scheme. This scheme adopts dynamic handover threshold according to different velocity to skip some unnecessary handover stages, reduces handover delay and enhances the network resource utilization. The simulation result and performance analysis validate the efficiency of the proposed scheme.展开更多
基金supported by the National Natural Science Foundation of China(No.61032002)the National Basic Research Program of China(973 Program No.2012CB316100)the 111 project(No.111-2-14)
文摘Two position-assisted fast handover schemes, scheme A and scheme B, for LTE-A system under very high mobility scenarios, are proposed, together with their performance evaluation. Scheme A is designed to reduce handover delay by making handover preparation before handover starts. Scheme B aims at reducing unnecessary handovers and improving handover success rate, by calculating the geographically best target handover cell, which makes it easier for mobile terminals to access the target cell. A system level simulation is conducted to evaluate the performance of these two schemes. It is shown that, scheme A could reduce inter-site handover delay by about 50 ms, while scheme B could cut down nearly 50% of all handovers when time-to-trigger (TTT) is 0 ms. Besides, as TTT gets larger, Scheme B has much better success rate.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2020R1G1A1100493).
文摘Mobility support to change the connection from one access point(AP)to the next(i.e.,handover)becomes one of the important issues in IEEE 802.11 wireless local area networks(WLANs).During handover,the channel scanning procedure,which aims to collect neighbor AP(NAP)information on all available channels,accounts for most of the delay time.To reduce the channel scanning procedure,a neighbor beacon frame transmission scheme(N-BTS)was proposed for a seamless handover.N-BTS can provide a seamless handover by removing the channel scanning procedure.However,N-BTS always requires operating overhead even if there are few mobile stations(MSs)for the handover.Therefore,this paper proposes a reinforcement learning-based handover scheme with neighbor beacon frame transmission(MAN-BTS)to properly consider the use of N-BTS.The optimization equation is defined to maximize the expected reward tofind the optimal policy and is solved using Q-learning.Simulation results show that the proposed scheme outperforms the comparison schemes in terms of the expected reward.
文摘Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support mobile, some kinds of handover schemes must be adopted, and the hard handover is defined as mandatory. Since the data transmission should be paused during the hard handover process, it causes handover delay in mobile communication. The handover delay makes severe degradation in system performance when implemented in real-time applications such as IPTV and VoIP. The existing draft standard considers only the received signal strength when deciding handover initiation. However, the velocity factor also has an important influence on handover initiation and can not be neglected. To deal with these problems, this article proposes a velocity-adaptive handover scheme. This scheme adopts dynamic handover threshold according to different velocity to skip some unnecessary handover stages, reduces handover delay and enhances the network resource utilization. The simulation result and performance analysis validate the efficiency of the proposed scheme.