A quantitative survey of rice planthoppers in paddy fields is important to assess the population density and make forecasting decisions. Manual rice planthopper survey methods in paddy fields are time-consuming, fatig...A quantitative survey of rice planthoppers in paddy fields is important to assess the population density and make forecasting decisions. Manual rice planthopper survey methods in paddy fields are time-consuming, fatiguing and tedious. This paper describes a handheld device for easily capturing planthopper images on rice stems and an automatic method for counting rice planthoppers based on image processing. The handheld device consists of a digital camera with WiFi, a smartphone and an extrendable pole. The surveyor can use the smartphone to control the camera, which is fixed on the front of the pole by WiFi, and to photograph planthoppers on rice stems. For the counting of planthoppers on rice stems, we adopt three layers of detection that involve the following:(a) the first layer of detection is an AdaBoost classifier based on Haar features;(b) the second layer of detection is a support vector machine(SVM) classifier based on histogram of oriented gradient(HOG) features;(c) the third layer of detection is the threshold judgment of the three features. We use this method to detect and count whiteback planthoppers(Sogatella furcifera) on rice plant images and achieve an 85.2% detection rate and a 9.6% false detection rate. The method is easy, rapid and accurate for the assessment of the population density of rice planthoppers in paddy fields.展开更多
The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR) has been cons...The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR) has been considered for use as a landscape simulation system in which a landscape assessment object created by 3D models is included in the present surroundings. With the use of this system, the time and the cost needed to perform a 3DCG modeling of present surroundings, which is a major issue in virtual reality, are drastically reduced. This research presents the development of a 3D maporiented handheld AR system that achieves geometric consistency using a 3D map to obtain position data instead of GPS, which has tow position information accuracy, particularly in urban areas. The new system also features a gyroscope sensor to obtain posture data and a video camera to capture live video of the present surroundings. All these components are mounted in a smartphone and can be used for urban landscape assessment. Registration accuracy is evaluated to simulate an urban landscape from a short- to a long-range scale. The latter involves a distance of approximately 2000 m. The developed AR system enables users to simulate a Landscape from multiple and longdistance viewpoints simultaneously and to walk around the viewpoint fields using only a smartphone. This result is the tolerance level of Landscape assessment. In conclusion, the proposed method is evaluated as feasible and effective.展开更多
基金the National Natural Science Foundation of China (31071678)the National High Technology Research and Development Program of China (863 Program, 2013AA102402)Zhejiang Provincial Natural Science Foundation of China (LY13C140009)
文摘A quantitative survey of rice planthoppers in paddy fields is important to assess the population density and make forecasting decisions. Manual rice planthopper survey methods in paddy fields are time-consuming, fatiguing and tedious. This paper describes a handheld device for easily capturing planthopper images on rice stems and an automatic method for counting rice planthoppers based on image processing. The handheld device consists of a digital camera with WiFi, a smartphone and an extrendable pole. The surveyor can use the smartphone to control the camera, which is fixed on the front of the pole by WiFi, and to photograph planthoppers on rice stems. For the counting of planthoppers on rice stems, we adopt three layers of detection that involve the following:(a) the first layer of detection is an AdaBoost classifier based on Haar features;(b) the second layer of detection is a support vector machine(SVM) classifier based on histogram of oriented gradient(HOG) features;(c) the third layer of detection is the threshold judgment of the three features. We use this method to detect and count whiteback planthoppers(Sogatella furcifera) on rice plant images and achieve an 85.2% detection rate and a 9.6% false detection rate. The method is easy, rapid and accurate for the assessment of the population density of rice planthoppers in paddy fields.
文摘The need for visual landscape assessment in large-scale projects for the evaluation of the effects of a particular project on the surrounding landscape has grown in recent years. Augmented reality (AR) has been considered for use as a landscape simulation system in which a landscape assessment object created by 3D models is included in the present surroundings. With the use of this system, the time and the cost needed to perform a 3DCG modeling of present surroundings, which is a major issue in virtual reality, are drastically reduced. This research presents the development of a 3D maporiented handheld AR system that achieves geometric consistency using a 3D map to obtain position data instead of GPS, which has tow position information accuracy, particularly in urban areas. The new system also features a gyroscope sensor to obtain posture data and a video camera to capture live video of the present surroundings. All these components are mounted in a smartphone and can be used for urban landscape assessment. Registration accuracy is evaluated to simulate an urban landscape from a short- to a long-range scale. The latter involves a distance of approximately 2000 m. The developed AR system enables users to simulate a Landscape from multiple and longdistance viewpoints simultaneously and to walk around the viewpoint fields using only a smartphone. This result is the tolerance level of Landscape assessment. In conclusion, the proposed method is evaluated as feasible and effective.