A new Hamiltonian model is introduced to study the spectrum of light hadrons. It combines relativis- tic field theory with elements of the constituent quark model. In addition to the standard linear confining and pseu...A new Hamiltonian model is introduced to study the spectrum of light hadrons. It combines relativis- tic field theory with elements of the constituent quark model. In addition to the standard linear confining and pseudoscalar meson exchange interactions with predetermined parameters, an additional interaction with different covariant spin structures is examined. Using a large scale Monte Carlo variational procedure, the resulting model Hamiltonian provides a very good, unified description of the light quark baryon (both octet and decuplet) and meson spectra,展开更多
Broadcast is one of the most important approach in distributed memory parallel computers that is used to find a routing approach from one source to all nodes in the mesh. Broadcasting is a data communication task in w...Broadcast is one of the most important approach in distributed memory parallel computers that is used to find a routing approach from one source to all nodes in the mesh. Broadcasting is a data communication task in which corresponds to one-to-all communication. Routing schema is the approach used to determine the road that is used to send a message from a source node to destination nodes. In this paper, we propose an efficient algorithm for broadcasting on an all-port wormhole-routed 3D mesh with arbitrary size. Wormhole routing is a fundamental routing mechanism in modern parallel computers which is characterized with low communication latency. We show how to apply this approach to 3-D meshes. In wormhole, routing large network packets are broken into small pieces called FLITs (flow control digits). The destination address is kept in the first flit which is called the header flit and sets up the routing behavior for all subsequent flits associated with the packet. In this paper, we introduce an efficient algorithm, X-Hamiltonian Surface Broadcast (X-HSB) which uses broadcast communication facility with deadlock-free wormhole routing in general three dimensional networks. In this paper, the behaviors of this algorithm are compared to the previous results using simulation;our paradigm reduces broadcast latency and is simpler. The results presented in this paper indicate the advantage of our proposed algorithm.展开更多
Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the...Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.展开更多
基金Supported by National Natural Science Foundation of China(11261130311,11035006)
文摘A new Hamiltonian model is introduced to study the spectrum of light hadrons. It combines relativis- tic field theory with elements of the constituent quark model. In addition to the standard linear confining and pseudoscalar meson exchange interactions with predetermined parameters, an additional interaction with different covariant spin structures is examined. Using a large scale Monte Carlo variational procedure, the resulting model Hamiltonian provides a very good, unified description of the light quark baryon (both octet and decuplet) and meson spectra,
文摘Broadcast is one of the most important approach in distributed memory parallel computers that is used to find a routing approach from one source to all nodes in the mesh. Broadcasting is a data communication task in which corresponds to one-to-all communication. Routing schema is the approach used to determine the road that is used to send a message from a source node to destination nodes. In this paper, we propose an efficient algorithm for broadcasting on an all-port wormhole-routed 3D mesh with arbitrary size. Wormhole routing is a fundamental routing mechanism in modern parallel computers which is characterized with low communication latency. We show how to apply this approach to 3-D meshes. In wormhole, routing large network packets are broken into small pieces called FLITs (flow control digits). The destination address is kept in the first flit which is called the header flit and sets up the routing behavior for all subsequent flits associated with the packet. In this paper, we introduce an efficient algorithm, X-Hamiltonian Surface Broadcast (X-HSB) which uses broadcast communication facility with deadlock-free wormhole routing in general three dimensional networks. In this paper, the behaviors of this algorithm are compared to the previous results using simulation;our paradigm reduces broadcast latency and is simpler. The results presented in this paper indicate the advantage of our proposed algorithm.
基金Thanks to Professor Zhipei Sun (Aalto University, Finland) for valuable discussions. This work was supported by the International Cooperative Program (Grant No. 2014DFR10780), the National Natural Science Foundation of China (Grant No. 61275105), tile Natural Science Foundation of Shaanxi Province (Grant No. 2014JM2-1008), and the State Key Laboratory of Transient Optics and Photonic Technology 2015 An- nual Open Fund (Grant No. SKLST200915).
文摘Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.