期刊文献+
共找到214篇文章
< 1 2 11 >
每页显示 20 50 100
THE TRACE IDENTITY, A POWERFUL TOOL FOR CONSTRUCTING THE HAMILTONIAN STRUCTURE OF INTEGRABLE SYSTEMS (Ⅱ) 被引量:117
1
作者 屠规彰 孟大志 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1989年第1期89-96,共8页
An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the... An isospectral problem with four potentials is discussed. The corresponding hierarchy of nonlinearevolution equations is derived. It is shown that the AKNS, Levi, D-AKNS hierarchies and a new oneare reductions of the above hierarchy. In each case the relevant Hamiltonian form is established bymaking use of the trase identity. 展开更多
关键词 THE TRACE IDENTITY A POWERFUL TOOL FOR CONSTRUCTING THE hamiltonian structure OF INTEGRABLE SYSTEMS
原文传递
Structure of the spectrum of infinite dimensional Hamiltonian operators 被引量:26
2
作者 Alatancang 《Science China Mathematics》 SCIE 2008年第5期915-924,共10页
This paper deals with the structure of the spectrum of infinite dimensional Hamiltonian operators.It is shown that the spectrum,the union of the point spectrum and residual spectrum,and the continuous spectrum are all... This paper deals with the structure of the spectrum of infinite dimensional Hamiltonian operators.It is shown that the spectrum,the union of the point spectrum and residual spectrum,and the continuous spectrum are all symmetric with respect to the imaginary axis of the complex plane. Moreover,it is proved that the residual spectrum does not contain any pair of points symmetric with respect to the imaginary axis;and a complete characterization of the residual spectrum in terms of the point spectrum is then given.As applications of these structure results,we obtain several necessary and sufficient conditions for the residual spectrum of a class of infinite dimensional Hamiltonian operators to be empty. 展开更多
关键词 non-self-adjoint operator infinite dimensional hamiltonian operator structure of spectrum 47A10 47B99
原文传递
基于Hamilton实现的电力系统振荡源设备级定位 被引量:24
3
作者 李颖 沈沉 刘锋 《电力系统自动化》 EI CSCD 北大核心 2012年第23期6-11,86,共7页
功率振荡问题威胁着电力传输的安全,在线振荡源定位有助于采取针对性措施以平息振荡。目前,区域级和机组级的定位方法已经可以判别振荡源所在的区域或发电机组,但还有必要进一步深入到发电机内部判断振荡源所在控制设备。文中基于Hamil... 功率振荡问题威胁着电力传输的安全,在线振荡源定位有助于采取针对性措施以平息振荡。目前,区域级和机组级的定位方法已经可以判别振荡源所在的区域或发电机组,但还有必要进一步深入到发电机内部判断振荡源所在控制设备。文中基于Hamilton实现对发电机内部的能量结构进行分析,将发电机注入电力网络的暂态能量拆分为与调速系统和励磁系统分别相对应的2个分量,以这2个能量分量作为判定振荡源所在控制设备的指标。对单机无穷大系统和IEEE 39节点系统的仿真证明了文中所述方法的正确性和有效性。由于文中所提出的方法只需要本地母线的网络量测,因此既可在控制中心在线应用,也可在厂站端实现分散化监测。 展开更多
关键词 振荡源定位 Hamilton实现 能量结构 端口供给能量
下载PDF
一个Lie代数的子代数及其相关的两类Loop代数 被引量:10
4
作者 张玉峰 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第1期141-152,共12页
本文构造了Lie代数A2的一个子代数A2,通过选取恰当的基元阶数得到相应的一个loop代数A2,由此设计一个等谱问题,利用屠格式得到了一个新的Liouville可积的Hamilton方程族.作为其约化情形,得到了一个非线性有理分式型演化方程.再由一个矩... 本文构造了Lie代数A2的一个子代数A2,通过选取恰当的基元阶数得到相应的一个loop代数A2,由此设计一个等谱问题,利用屠格式得到了一个新的Liouville可积的Hamilton方程族.作为其约化情形,得到了一个非线性有理分式型演化方程.再由一个矩阵变换,得到了换位运算与A2等价的Lie代数A1的一个子代数A1,将A1再扩展成一个新的高维loop代数G,利用G获得了所得方程族的一类扩展可积系统. 展开更多
关键词 子代数 LOOP代数 LIE代数 可积系统 LIOUVILLE可积 等谱问题 屠格式 位运算 高维 扩展
原文传递
Lie Algebras for Constructing Nonlinear Integrable Couplings 被引量:15
5
作者 张玉峰 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第11期805-812,共8页
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational ide... Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. 展开更多
关键词 Lie algebra nonlinear integrable couplings hamiltonian structure
下载PDF
一族新的Lax可积系及其Liouville可积性 被引量:5
6
作者 徐西祥 《数学物理学报(A辑)》 CSCD 北大核心 1997年第S1期57-61,共5页
该文讨论了一个新的等谱特征值问题.按屠规彰格式导出了相应的Lax可积的非线性发展方程族,利用迹恒等式给出了它的Hamilton结构并且证明它是Liouville可积的.
关键词 可积系 HAMILTON结构 迹恒等式.
下载PDF
一类S-mKdV方程族及其扩展可积模型 被引量:6
7
作者 张玉峰 闫庆友 张鸿庆 《物理学报》 SCIE EI CAS CSCD 北大核心 2003年第1期5-11,共7页
由loop代数 A1 的一个子代数出发 ,构造了一个线性等谱问题 ,再利用屠格式计算出了一类Liouvelle意义下的可积系统及其双Hamilton结构 ,作为该可积系统的约化 ,得到了著名的Schr dinger方程和mKdV方程 ,因此称该系统为S mKdV方程族 .... 由loop代数 A1 的一个子代数出发 ,构造了一个线性等谱问题 ,再利用屠格式计算出了一类Liouvelle意义下的可积系统及其双Hamilton结构 ,作为该可积系统的约化 ,得到了著名的Schr dinger方程和mKdV方程 ,因此称该系统为S mKdV方程族 .根据已构造的 A1 的子代数 ,又构造了维数为 5的loop代数 A2 的一个新的子代数 G ,由此出发设计了一个线性等谱形式 ,再利用屠格式求得了S mKdV方程族的一类扩展可积模型 .利用这种方法还可以求BPT方程族、TB方程族等谱系的扩展可积模型 .因此本方法具有普遍应用价值 .最后作为特例 ,求得了著名的Schr dinger方程和mKdV方程的可积耦合系统 . 展开更多
关键词 LOOP代数 HAMILTON结构 扩展可积模型 SCHROEDINGER方程 MKDV方程 线性等谱 可积耦合系统
原文传递
Hamiltonian realization of power system dynamic models and its applications 被引量:8
8
作者 MA Jin1 & MEI ShengWei2 1 Key Laboratory of Power System Protection and Dynamic Security Monitoring and Control of Ministry of Education, North China Electric Power University, Beijing 102206, China 2 Electrical Engineering Department, Tsinghua University, Beijing 100084, China 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第6期735-750,共16页
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian s... Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hamiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized. 展开更多
关键词 POWER system DYNAMICS hamiltonian structure NONLINEAR control
原文传递
Some New Reductions From a Lax Integrable System 被引量:7
9
作者 En-gui FanInstitute of Mathematics. Fudan University, Shanghai 200433, China 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2002年第3期405-410,共6页
An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except thos... An isospectral problem with four potentials is discussed. The corresponding hierarchy of Lax integrable evolution equations is derived. For the hierarchy, it is shown that there exist other new reductions except those presented by Tu, Meng and Ma. For each reduction case the relevant Hamiltonian structure is established by means of trace identity. 展开更多
关键词 Lax integrable system REDUCTION hamiltonian structure trace identity
全文增补中
一个新的无限维Liouville可积系及其变换 被引量:7
10
作者 徐西祥 《高校应用数学学报(A辑)》 CSCD 北大核心 1997年第2期139-146,共8页
本文讨论了一个新的等谱特征问题,按屠规彰格式导出了相应的Lax可积的非线性发展方程族.证明了它是Liouvile可积系。
关键词 可积系 LIOUVILLE可积 发展方程 非线性
下载PDF
Some Evolution Hierarchies Derived from Self-dual Yang-Mills Equations 被引量:8
11
作者 张玉峰 韩耀宗 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第11期856-872,共17页
We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra E of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable mo... We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra E of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable model of the Giachetti-Johnson (G J) hierarchy whose Hamiltonian structure can also be derived by using the trace identity. This provides a much simplier construction method in comparing with the tedious variational identity approach. Furthermore, the nonlinear integrable coupling of the GJ hierarchy is readily obtained by introducing the Lie algebra gN. As an application, we apply the loop algebra E of the Lie algebra E to obtain a kind of expanding integrable model of the Kaup-Newell (KN) hierarchy which, consisting of two arbitrary parameters a and β, can be reduced to two nonlinear evolution equations. In addition, we use a loop algebra F of the Lie algebra F to obtain an expanding integrable model of the BT hierarchy whose Hamiltonian structure is the same as using the trace identity. Finally, we deduce five integrable systems in R3 based on the self-dual Yang-Mills equations, which include Poisson structures, irregular lines, and the reduced equations. 展开更多
关键词 Lie algebra hamiltonian structure Yang-Mills equation
下载PDF
An Eight Component Integrable Hamiltonian Hierarchy from a Reduced Seventh-Order Matrix Spectral Problem
12
作者 Savitha Muthanna Wen-Xiu Ma 《Journal of Applied Mathematics and Physics》 2024年第6期2102-2111,共10页
We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the... We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed. 展开更多
关键词 Matrix Spectral Problem Zero Curvature Equation Lax Pair Integrable Hierarchy NLS Equations mKdV Equations hamiltonian structure Lie Bracke
下载PDF
A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem
13
作者 Wen-Xiu Ma 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第7期1-8,共8页
This paper aims to propose a fourth-order matrix spectral problem involving four potentials and generate an associated Liouville integrable hierarchy via the zero curvature formulation.A bi-Hamiltonian formulation is ... This paper aims to propose a fourth-order matrix spectral problem involving four potentials and generate an associated Liouville integrable hierarchy via the zero curvature formulation.A bi-Hamiltonian formulation is furnished by applying the trace identity and a recursion operator is explicitly worked out,which exhibits the Liouville integrability of each model in the resulting hierarchy.Two specific examples,consisting of novel generalized combined nonlinear Schrodinger equations and modified Korteweg-de Vries equations,are given. 展开更多
关键词 INTEGRABLE hierarchy hamiltonian structure zero curvature equation LAX pair MATRIX spectral problem
原文传递
两个高维loop代数及应用 被引量:5
14
作者 张玉峰 张鸿庆 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第6期1287-1296,共10页
借助于循环数,构造了维数分别是5(s+1)和4(s+1)的两个高维loop代数.为了计算方便,本文只考虑s=1时的应用.利用第一个loop代数A^-1^*得到了具有4-Hamilton结掏的一个广义AKNS族,该方程雄可约化为著名的,AKNS族.利用第二个l... 借助于循环数,构造了维数分别是5(s+1)和4(s+1)的两个高维loop代数.为了计算方便,本文只考虑s=1时的应用.利用第一个loop代数A^-1^*得到了具有4-Hamilton结掏的一个广义AKNS族,该方程雄可约化为著名的,AKNS族.利用第二个loop代数A^-1^*得到了具有4个分量位势函数的4-Hamilton结构方程族,该族可约化为一个非线性耦合Burgers方程和一个耦合的KdV方程. 展开更多
关键词 循环数 LOOP代数 HAMILTON结构
原文传递
Derivation of Expanded Isospectral-Nonisospectral Integrable Hierarchies via the Column-vector Loop Algebra
15
作者 Hai-feng WANG Yu-feng ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第3期778-800,共23页
A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the co... A scheme for generating nonisospectral integrable hierarchies is introduced.Based on the method,we deduce a nonisospectral hierarchy of soliton equations by considering a linear spectral problem.It follows that the corresponding expanded isospectral and nonisospectral integrable hierarchies are deduced based on a 6 dimensional complex linear space ■.By reducing these integrable hierarchies,we obtain the expanded isospectral and nonisospectral derivative nonlinear Schr?dinger equation.By using the trace identity,the biHamiltonian structure of these two hierarchies are also obtained.Moreover,some symmetries and conserved quantities of the resulting hierarchy are discussed. 展开更多
关键词 expanded isospectral-nonisospectral integrable hierarchies column-vector loop algebra bi-hamiltonian structure SYMMETRY
原文传递
哈密顿体系与弹性楔体问题 被引量:3
16
作者 徐新生 郑新广 +1 位作者 张洪武 钟万勰 《应用力学学报》 CAS CSCD 北大核心 1999年第2期140-144,共5页
将哈密顿体系引入到极坐标下的弹性力学楔体问题。利用该体系辛空间的性质,将问题化为本征值和本征向量求解上,得到了完备的解空间,从而改变了弹性力学传统的拉格朗日体系以应力函数为特征的半逆法讨论去解决该类问题的思路。给出了... 将哈密顿体系引入到极坐标下的弹性力学楔体问题。利用该体系辛空间的性质,将问题化为本征值和本征向量求解上,得到了完备的解空间,从而改变了弹性力学传统的拉格朗日体系以应力函数为特征的半逆法讨论去解决该类问题的思路。给出了一条求解该类问题的直接法。 展开更多
关键词 弹性 哈密顿体系 楔体 本征值
下载PDF
GENERALIZED FRACTIONAL TRACE VARIATIONAL IDENTITY AND A NEW FRACTIONAL INTEGRABLE COUPLINGS OF SOLITON HIERARCHY 被引量:3
17
作者 魏含玉 夏铁成 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期53-64,共12页
Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable coup... Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy. 展开更多
关键词 generalized fractional trace variational identity fractional integrable couplings soliton hierarchy hamiltonian structure
下载PDF
The quadratic-form identity for constructing Hamiltonian structures of the Guo hierarchy 被引量:3
18
作者 董焕河 张宁 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第9期1919-1926,共8页
The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+l)-dimensional Guo hierarchy are obtained ... The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+l)-dimensional Guo hierarchy are obtained by the quadraticform identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies. 展开更多
关键词 hamiltonian structure Guo's hierarchy quadratic-form identity
下载PDF
具有不依赖于时间的不变量的三维常微分方程组的Hamilton结构 被引量:3
19
作者 郭仲衡 陈玉明 《应用数学和力学》 CSCD 北大核心 1995年第4期283-288,共6页
本文证明了具有不依赖于时间的不变量的三维常微分方程组所描述的动力系统相对于一广义Poisson括号可以改写为Hamilton系统,并且这些不变量就是Hamilton量。作为例子,我们讨论了Kermack-Mckend... 本文证明了具有不依赖于时间的不变量的三维常微分方程组所描述的动力系统相对于一广义Poisson括号可以改写为Hamilton系统,并且这些不变量就是Hamilton量。作为例子,我们讨论了Kermack-Mckendrick传染病模型,所得结果推广了Y.Nutku的结果。 展开更多
关键词 K-M传染病模型 常微分方程组 哈密顿结构
下载PDF
Loop Algebras and Bi-integrable Couplings 被引量:4
20
作者 Wenxiu MA 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第2期207-224,共18页
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational iden... A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy. 展开更多
关键词 Loop algebra Bi-integrable coupling Zero curvature equation SYMMETRY hamiltonian structure
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部