In order to reveal the drought resistance and adaptation of the C4 desert plant Haloxylon ammodendron under artificially controlled soil moisture regimes,representative plants were selected to measure canopy photosynt...In order to reveal the drought resistance and adaptation of the C4 desert plant Haloxylon ammodendron under artificially controlled soil moisture regimes,representative plants were selected to measure canopy photosynthesis using canopy photosynthetic measurement system.The results showed that appropriate soil moisture significantly enhances the canopy and leaf photosynthetic capacity,and extremely high soil moisture is not conducive to the photosynthesis of H.ammodendron.展开更多
The authors studied the effects using three different levels of irrigation on the growth and biomass allocation in H. ammodendron and T. ramosissima seedlings in the shelterbelt along the Tarim Desert Highway. The thr...The authors studied the effects using three different levels of irrigation on the growth and biomass allocation in H. ammodendron and T. ramosissima seedlings in the shelterbelt along the Tarim Desert Highway. The three irrigation amounts were 35 (CK), 24.5 (treatment 1), and 14 (treatment 2) kg·ind. plant-1·once-1, respectively. The results show that (1) the vertical depth of the two seedlings’ root increased with lower levels of irrigation showing that the two species adapted to decreased irrigation by root elongation in the hinterland of the Taklimakan Desert, and the vertical root depth of H. ammodendron under treatment 2 was notably higher than CK. (2) Compared with CK, the belowground biomass of treatment 1 and 2 both showed a significant increase as follows: H. ammodendron seedlings in- creased by 14.51% and 37.03% under treatment 1 and 2, respectively, while T. ramosissima seedlings increased by 68.19% and 25.78% under treatment 1 and 2, respectively. This means that H. ammoden- dron seedlings were more adapted to the conditions in treatment 2 while T. ramosissima seedlings were better adapted to treatment 1 conditions. (3) When compared with CK, the fine root bomass of these two species all exhibited some increase under both treatments, and ANOVA analysis showed that the biomass of deep layer root of the two species under treatment 2 was notably higher than CK and treatment 1. This should help seedlings to more effectively absorb soil water from deep layers during dry conditions. (4) The root-shoot ratio was different for these two species. For H. ammodendron seed- lings, the root-shoot ratio was less than 1, while for T. ramosissim seedlings it was larger than 1. The root-shoot ratio of H. ammodendron seedlings increased with decreasing levels of irrigation, and that of T. ramosissim seedlings also increased under treatment 2. (5) With decreasing levels of irrigation, due to the difference of species, the growth variation of aboveground indexes was also different, while compared with CK, it was not 展开更多
Soil enzyme activity plays an important role in the conversion of soil organic carbon into inorganic carbon, which is significant for the global carbon cycle. In this study, we investigated the soil enzyme activities ...Soil enzyme activity plays an important role in the conversion of soil organic carbon into inorganic carbon, which is significant for the global carbon cycle. In this study, we investigated the soil enzyme activities of two ligninolytic enzymes (peroxidase and polyphenol oxidase) and five non-ligninolytic enzymes (a-l,4-glucosidase (AG); 13-1,4-gluco- sidase (BG); N-acetyl-[3-glucosaminidase (NAG); ~3-D-cellobiosidase (CBH); and ^-xylosidase (BXYL)) in four plant communities of the Sangong River basin in Fukang, North Xinjiang, China. The four typical plant communities were dominated by Haloxylon ammodendron, Reaumuria soongonica, Salsola passerina, and Tamarix rarmosissima, respec- tively, with saline soils of varied alkalinity. The results showed that the soil peroxidase activity decreased seasonally. The activities of the five non-ligninolytic enzymes decreased with increasing soil depths, while those of the two ligninolytic enzymes did not show such a trend. In the four plant communities, BG had the highest activity among the five non-ligninolytic enzymes, and the activities of the two ligninolytic enzymes were higher than those of the four non-ligninolytic ones (AG, NAG, CBH, and BXYL). The community of H. ammodendron displayed the highest activity with respect to the two ligninolytic enzymes in most cases, but no significant differences were found among the four plant communities. The geometric mean of soil enzyme activities of the four plant communities was validated through an inde- pendently performed principal component analysis (PCA), which indicated that different plant communities had different soil enzyme activities. The correlation analysis showed that soil polyphenol oxidase activity was significantly positively correlated with the activities of the five non-ligninolytic enzymes. The soil pH value was positively correlated with the ac- tivities of all soil enzymes except peroxidase. Soil microbial carbon content also showed a significant positive correlation (展开更多
The use of antibiotics in humans and animals has been marked as a significant step in health due to their effectiveness in controlling and treating bacterial infections. The misuse and overuse of antibiotics have been...The use of antibiotics in humans and animals has been marked as a significant step in health due to their effectiveness in controlling and treating bacterial infections. The misuse and overuse of antibiotics have been identified as risk factors for bacterial resistance since microorganisms adapt and develop mechanisms to defend against antibiotics. According to the Centers for Disease Protection and Control (CDC), around 23,000 individuals die every year in the United States due to antibiotic resistance complications. As a result, a demand for alternative treatments has been a goal for scientists as the microbes adapt to selective pressure. The aim of this study is to test the antibacterial activity of leaf extracts of Peganum harmala and Haloxylon salicornicum on both Gram-positive and Gram-negative bacteria on various mediums. The results of the study showed that both P. harmala and H. salicornicum inhibited the bacterial growth in two different media. The results were also compared with different common antibiotics used in both human’s and animal’s fields and showed a promising outcome as alternative antibiotics.展开更多
Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in san...Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in sand-fixing shelter-forest systems in oasis-desert ecotones. To assess the effects of H. ammodendron plantation on the soil, we measured soil properties and herbaceous characteristics along a nearly 40-year chronosequence after H. ammodendron was planted in shifting sand dunes in an oasis-desert ecotone. Results showed that silt and clay fractions increased significantly in the topsoil. The accumulation rates of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were faster in the early stages (0-9 years) and slower in the late stages (9-39 years). The soil pH and electrical conductivity (EC) were higher than those in the non-vegetation dunes. Moreover, the soil properties in the topsoil (0-5 cm) showed larger variation scope than those in the deeper soil layers (5-20 cm). The significant relationships of the soil silt+clay content with the chemical properties mainly appeared in the topsoil. The wind erosion susceptibility of the soil, evaluated by erodible fraction (EF), decreased significantly with increasing H. ammodendron plantation age. Additionally, the annual pioneer herb, Agriophyllum squarrosum, was gradually substituted by the annual salt-tolerant herb, Bassia dasyphylla, with increasing plantation age. These results showed beneficial effects of H. ammodendron plantation on improving soil conditions. However, the dynamics of the herbaceous species also reminded us that the long- term effects of H. ammodendron plantation, especially on changes in vegetation composition, still need further evaluation.展开更多
Cancer is a worldwide disease that ranks as the second-largest cause of death after cardiovascular disease. In 2019, the estimated number of cancer deaths was around 10 million worldwide and 600,000 in the United Stat...Cancer is a worldwide disease that ranks as the second-largest cause of death after cardiovascular disease. In 2019, the estimated number of cancer deaths was around 10 million worldwide and 600,000 in the United States. Due to the high side effects of the available treatments for cancer, such as chemotherapy and radiotherapy, a demand for alternative treatments has been a goal for scientists with less toxicity and side effects. Lung cancer is the most common type of cancer worldwide and the leading cause of death in the United States. In addition, prostate cancer is the second-leading cause of cancer death in American men after lung cancer. Natural sources discovered to have therapeutic medicinal properties against human diseases are the plants Peganum harmala and Haloxylon salicornicum. The aim of this study is to test the anticancer activity of leaf extracts of Peganum harmala and Haloxylon salicornicum on lung cancer (A549) and prostate cancer (PC3) cell lines. The anticancer activity of P. harmala and H. salicornicum was studied using the assays: crystal violet viability, lipid peroxidation, and caspase-3 techniques, which were evaluated in vitro on two human cancer cell lines. The results of the study showed that both plants’ extracts reduced the viability of both cancer cell lines, which depended on the concentration of the extract. Also, P. harmala showed more potent activity against both types of cancer than H. salicornicum. P. harmala and H. salicornicum decreased the lipid peroxidation that induces cancer as well as increased the expression of caspase-3, which causes apoptosis and cell death. This study concluded that P. harmala and H. salicornicum leaf extracts showed significant anticancer properties, which might be due to the presence of phytochemicals, including flavonoids and phenolics.展开更多
Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the...Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance展开更多
Soil moisture is critical for vegetation growth in deserts.However,detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported.In this study...Soil moisture is critical for vegetation growth in deserts.However,detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported.In this study,we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016,to explore the spatio-temporal variation of soil moisture content,investigate the impact of Haloxylon ammodendron(C.A.Mey.)Bungeon soil moisture content in its root zone,and examine the factors influencing the soil moisture spatial pattern.One-way analysis of variance,least significant difference tests and correlation analysis were used to analyze the data.The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods,namely,a moisturegaining period,a moisture-losing period and a moisture-stable period.According to the temporal and spatial variability,the 0–400 cm soil profile could be divided into two layers:an active layer with moderate variability and a stable layer with weak variability.The temporal variability was larger than the spatial variability in the active layer,and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top.The mean profile soil moisture content in the root zone of dead H.ammodendron individuals was significantly higher than that in the root zones of adult and young individuals,while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference.The spatial pattern of soil moisture was attributable to the combined effects of snowfall,vegetation and soil texture,whereas the effects of rainfall and evaporation were not significant.The findin展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 40771005 and 30870382)the Chinese Academy of Sciences Action-plan for West Development (Grant Nos. KZCX2-XB2-09- 03 and KZCX2-XB2-04-01)
文摘In order to reveal the drought resistance and adaptation of the C4 desert plant Haloxylon ammodendron under artificially controlled soil moisture regimes,representative plants were selected to measure canopy photosynthesis using canopy photosynthetic measurement system.The results showed that appropriate soil moisture significantly enhances the canopy and leaf photosynthetic capacity,and extremely high soil moisture is not conducive to the photosynthesis of H.ammodendron.
基金Supported by Major Orientation Foundation of the CAS Innovation Program (Grant No. KZCX3-SW-342)Research Developing Planning Program of National High and New Technology of China (Grant No. 2004BA901A21-1)
文摘The authors studied the effects using three different levels of irrigation on the growth and biomass allocation in H. ammodendron and T. ramosissima seedlings in the shelterbelt along the Tarim Desert Highway. The three irrigation amounts were 35 (CK), 24.5 (treatment 1), and 14 (treatment 2) kg·ind. plant-1·once-1, respectively. The results show that (1) the vertical depth of the two seedlings’ root increased with lower levels of irrigation showing that the two species adapted to decreased irrigation by root elongation in the hinterland of the Taklimakan Desert, and the vertical root depth of H. ammodendron under treatment 2 was notably higher than CK. (2) Compared with CK, the belowground biomass of treatment 1 and 2 both showed a significant increase as follows: H. ammodendron seedlings in- creased by 14.51% and 37.03% under treatment 1 and 2, respectively, while T. ramosissima seedlings increased by 68.19% and 25.78% under treatment 1 and 2, respectively. This means that H. ammoden- dron seedlings were more adapted to the conditions in treatment 2 while T. ramosissima seedlings were better adapted to treatment 1 conditions. (3) When compared with CK, the fine root bomass of these two species all exhibited some increase under both treatments, and ANOVA analysis showed that the biomass of deep layer root of the two species under treatment 2 was notably higher than CK and treatment 1. This should help seedlings to more effectively absorb soil water from deep layers during dry conditions. (4) The root-shoot ratio was different for these two species. For H. ammodendron seed- lings, the root-shoot ratio was less than 1, while for T. ramosissim seedlings it was larger than 1. The root-shoot ratio of H. ammodendron seedlings increased with decreasing levels of irrigation, and that of T. ramosissim seedlings also increased under treatment 2. (5) With decreasing levels of irrigation, due to the difference of species, the growth variation of aboveground indexes was also different, while compared with CK, it was not
基金National Basic Research Program of China (2009CB825103)National Natural Science Foundation of China (31200422)China’s Postdoctoral Science Foundation (2012M520455, 2013T60193)
文摘Soil enzyme activity plays an important role in the conversion of soil organic carbon into inorganic carbon, which is significant for the global carbon cycle. In this study, we investigated the soil enzyme activities of two ligninolytic enzymes (peroxidase and polyphenol oxidase) and five non-ligninolytic enzymes (a-l,4-glucosidase (AG); 13-1,4-gluco- sidase (BG); N-acetyl-[3-glucosaminidase (NAG); ~3-D-cellobiosidase (CBH); and ^-xylosidase (BXYL)) in four plant communities of the Sangong River basin in Fukang, North Xinjiang, China. The four typical plant communities were dominated by Haloxylon ammodendron, Reaumuria soongonica, Salsola passerina, and Tamarix rarmosissima, respec- tively, with saline soils of varied alkalinity. The results showed that the soil peroxidase activity decreased seasonally. The activities of the five non-ligninolytic enzymes decreased with increasing soil depths, while those of the two ligninolytic enzymes did not show such a trend. In the four plant communities, BG had the highest activity among the five non-ligninolytic enzymes, and the activities of the two ligninolytic enzymes were higher than those of the four non-ligninolytic ones (AG, NAG, CBH, and BXYL). The community of H. ammodendron displayed the highest activity with respect to the two ligninolytic enzymes in most cases, but no significant differences were found among the four plant communities. The geometric mean of soil enzyme activities of the four plant communities was validated through an inde- pendently performed principal component analysis (PCA), which indicated that different plant communities had different soil enzyme activities. The correlation analysis showed that soil polyphenol oxidase activity was significantly positively correlated with the activities of the five non-ligninolytic enzymes. The soil pH value was positively correlated with the ac- tivities of all soil enzymes except peroxidase. Soil microbial carbon content also showed a significant positive correlation (
文摘The use of antibiotics in humans and animals has been marked as a significant step in health due to their effectiveness in controlling and treating bacterial infections. The misuse and overuse of antibiotics have been identified as risk factors for bacterial resistance since microorganisms adapt and develop mechanisms to defend against antibiotics. According to the Centers for Disease Protection and Control (CDC), around 23,000 individuals die every year in the United States due to antibiotic resistance complications. As a result, a demand for alternative treatments has been a goal for scientists as the microbes adapt to selective pressure. The aim of this study is to test the antibacterial activity of leaf extracts of Peganum harmala and Haloxylon salicornicum on both Gram-positive and Gram-negative bacteria on various mediums. The results of the study showed that both P. harmala and H. salicornicum inhibited the bacterial growth in two different media. The results were also compared with different common antibiotics used in both human’s and animal’s fields and showed a promising outcome as alternative antibiotics.
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
基金funded by the National Natural Science Foundation of China(41401337)
文摘Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in sand-fixing shelter-forest systems in oasis-desert ecotones. To assess the effects of H. ammodendron plantation on the soil, we measured soil properties and herbaceous characteristics along a nearly 40-year chronosequence after H. ammodendron was planted in shifting sand dunes in an oasis-desert ecotone. Results showed that silt and clay fractions increased significantly in the topsoil. The accumulation rates of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were faster in the early stages (0-9 years) and slower in the late stages (9-39 years). The soil pH and electrical conductivity (EC) were higher than those in the non-vegetation dunes. Moreover, the soil properties in the topsoil (0-5 cm) showed larger variation scope than those in the deeper soil layers (5-20 cm). The significant relationships of the soil silt+clay content with the chemical properties mainly appeared in the topsoil. The wind erosion susceptibility of the soil, evaluated by erodible fraction (EF), decreased significantly with increasing H. ammodendron plantation age. Additionally, the annual pioneer herb, Agriophyllum squarrosum, was gradually substituted by the annual salt-tolerant herb, Bassia dasyphylla, with increasing plantation age. These results showed beneficial effects of H. ammodendron plantation on improving soil conditions. However, the dynamics of the herbaceous species also reminded us that the long- term effects of H. ammodendron plantation, especially on changes in vegetation composition, still need further evaluation.
文摘Cancer is a worldwide disease that ranks as the second-largest cause of death after cardiovascular disease. In 2019, the estimated number of cancer deaths was around 10 million worldwide and 600,000 in the United States. Due to the high side effects of the available treatments for cancer, such as chemotherapy and radiotherapy, a demand for alternative treatments has been a goal for scientists with less toxicity and side effects. Lung cancer is the most common type of cancer worldwide and the leading cause of death in the United States. In addition, prostate cancer is the second-leading cause of cancer death in American men after lung cancer. Natural sources discovered to have therapeutic medicinal properties against human diseases are the plants Peganum harmala and Haloxylon salicornicum. The aim of this study is to test the anticancer activity of leaf extracts of Peganum harmala and Haloxylon salicornicum on lung cancer (A549) and prostate cancer (PC3) cell lines. The anticancer activity of P. harmala and H. salicornicum was studied using the assays: crystal violet viability, lipid peroxidation, and caspase-3 techniques, which were evaluated in vitro on two human cancer cell lines. The results of the study showed that both plants’ extracts reduced the viability of both cancer cell lines, which depended on the concentration of the extract. Also, P. harmala showed more potent activity against both types of cancer than H. salicornicum. P. harmala and H. salicornicum decreased the lipid peroxidation that induces cancer as well as increased the expression of caspase-3, which causes apoptosis and cell death. This study concluded that P. harmala and H. salicornicum leaf extracts showed significant anticancer properties, which might be due to the presence of phytochemicals, including flavonoids and phenolics.
基金supported by the the Basic Frontier Project of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(E3500201)the Xinjiang Tianshan Talent Program(2022TSYCLJ0002)the Fundamental Research Funds for the Central Universities(ZY20240223).
文摘Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance
基金supported by the National Natural Science Foundation of China (41671032, U1303181, U1806215)the National Key Research and Development Programs of China (2016YFC0501401, 2016YFD0200303, 2016YFC0501309, 2016YFC0501201)+1 种基金the National Basic Research Program of China (2013CB429902)the Key Deployment Project of the Chinese Academy of Sciences (KFZD-SW-112-03-02)
文摘Soil moisture is critical for vegetation growth in deserts.However,detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported.In this study,we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016,to explore the spatio-temporal variation of soil moisture content,investigate the impact of Haloxylon ammodendron(C.A.Mey.)Bungeon soil moisture content in its root zone,and examine the factors influencing the soil moisture spatial pattern.One-way analysis of variance,least significant difference tests and correlation analysis were used to analyze the data.The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods,namely,a moisturegaining period,a moisture-losing period and a moisture-stable period.According to the temporal and spatial variability,the 0–400 cm soil profile could be divided into two layers:an active layer with moderate variability and a stable layer with weak variability.The temporal variability was larger than the spatial variability in the active layer,and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top.The mean profile soil moisture content in the root zone of dead H.ammodendron individuals was significantly higher than that in the root zones of adult and young individuals,while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference.The spatial pattern of soil moisture was attributable to the combined effects of snowfall,vegetation and soil texture,whereas the effects of rainfall and evaporation were not significant.The findin