研究一种采用Boost变换器和半桥变换器级联所构成的功率因数校正(power factor correction,PFC)变换器拓扑,其工作在电流连续模式(continue current mode,CCM)模式下,仅在半桥变换器输出端使用储能电容补偿瞬时输入输出功率的不平衡。...研究一种采用Boost变换器和半桥变换器级联所构成的功率因数校正(power factor correction,PFC)变换器拓扑,其工作在电流连续模式(continue current mode,CCM)模式下,仅在半桥变换器输出端使用储能电容补偿瞬时输入输出功率的不平衡。半桥变换器桥臂电容作为Boost变换器输出端电容。通过适当的控制策略,降低了容值,无需高耐压等级的电解电容,提高了电路工作的可靠性。变压器漏感参与谐振,实现了半桥变换器功率管的软开关。分析PFC变换器的电路拓扑,给出前后级的控制逻辑关系,讨论软开关实现的条件以及减小电容规格的可行性,给出仿真及实验结果,证明该变换器具有良好的性能,满足GJB181A的要求。展开更多
以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽...以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。展开更多
文摘研究一种采用Boost变换器和半桥变换器级联所构成的功率因数校正(power factor correction,PFC)变换器拓扑,其工作在电流连续模式(continue current mode,CCM)模式下,仅在半桥变换器输出端使用储能电容补偿瞬时输入输出功率的不平衡。半桥变换器桥臂电容作为Boost变换器输出端电容。通过适当的控制策略,降低了容值,无需高耐压等级的电解电容,提高了电路工作的可靠性。变压器漏感参与谐振,实现了半桥变换器功率管的软开关。分析PFC变换器的电路拓扑,给出前后级的控制逻辑关系,讨论软开关实现的条件以及减小电容规格的可行性,给出仿真及实验结果,证明该变换器具有良好的性能,满足GJB181A的要求。
文摘以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。