The reasonable employment of cocatalyst in photocatalysis can effectively promote the photocatalytic H_(2)production activity.In this study,carbon hollow spheres(C),as a good conductive nonmetallic material,have been ...The reasonable employment of cocatalyst in photocatalysis can effectively promote the photocatalytic H_(2)production activity.In this study,carbon hollow spheres(C),as a good conductive nonmetallic material,have been utilized as a novel cocatalyst and a matrix for loading the Cu-doped-TiO_(2)nanoparticles by a successive hydrother-mal method and metal molten salt method.The Cu-doped-TiO_(2)nanoparticles were tightly anchored on the surface of carbon hollow sphere to form a zero-dimensional/three dimensional(0D/3D)Cu-doped-TiO2/C heterojunction.The optimal Cu-doped-TiO_(2)/C heterojunction demon-strated greatly enhanced photocatalytic H_(2) generation activity(14.4 mmol·g^(-1)·h^(-1))compared with TiO_(2)(0.33 mmol·g^(-1)·h^(-1))and TiO_(2)/C(0.7 mmol·g^(-1)·h^(-1)).The performance improvement was mainly due to the syner-gistic effect of carbon hollow sphere cocatalyst and Cu-doping,the Cu-doping in TiO_(2)nanoparticles can minimize charge recombination and enhance the available photoex-cited electrons,while the 3D carbon hollow spheres can act as electron traps to accelerate the charge separation and offer abundant active sites for solar water splitting reaction.展开更多
Two-dimensional(2D)semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers.Herein,a novel CoWO_(4)/g-C_(3)N_(4)(CWO/CN)p–n junction was synthesized us...Two-dimensional(2D)semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers.Herein,a novel CoWO_(4)/g-C_(3)N_(4)(CWO/CN)p–n junction was synthesized using an electrostatic selfassembly method.The constructed 2D/2D p–n heterostructure had a rich hetero-interface,increased charge density,and fast separation efficiency of photoinduced carriers.The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism.Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field,ensuring an efficient separation and transfer process of photoinduced carriers.Under the optimized conditions,the CWO/CN heterojunction displayed enhanced photocatalytic H_(2)generation activity under full spectrum and visible lights irradiation,respectively.Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p–n type semiconductor for photocatalytic H_(2)generation.展开更多
Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subje...Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subjected to atomic-level structural engineering by doping with transition metals(M=Fe,Co,or Ni),which simultaneously induced the formation of metal-N active sites in the g-C_(3)N_(4)framework and modulated the bandgap of g-C_(3)N_(4).Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C_(3)N_(4)acted as an"electron transfer bridge",where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges,and the optimized bandgap of g-C_(3)N_(4)afforded stronger reduction ability and wider light absorption.As a result,doping with either Fe,Co,or Ni had a positive effect on the HER activity,where Co-doped g-C_(3)N_(4)exhibited the highest performance.The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.展开更多
In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd...In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.展开更多
In this work,a novel NiP_(2)/g-C_(3)N_(4)heterojunction via homogeneous precipitation method assisted by thermal phosphorization reaction was designed and constructed,and the optimized sample showed the excellent phot...In this work,a novel NiP_(2)/g-C_(3)N_(4)heterojunction via homogeneous precipitation method assisted by thermal phosphorization reaction was designed and constructed,and the optimized sample showed the excellent photocatalytic H_(2)evolution activity under visible-light irradiation,which was nearly 112 times higher than that of pristine g-C_(3)N_(4)sample.Experimental characterizations and DFT calculations demonstrated that the NiP_(2)nanoparticles covered on the g-C_(3)N_(4)surface can form a built-in electric field at the interface to accelerate the transfer of photoexcited electrons from g-C_(3)N_(4)to NiP_(2),crucial for hindering the recombination of electron-hole pairs.Moreover,the energy barrier of hydrogen evolution reaction can also vastly reduce when combined NiP_(2)and g-C_(3)N_(4)to construct NiP_(2)/g-C_(3)N_(4)heterojunction.This work represents a method through combing experimental and theoretical tools to thoroughly investigate the mechanism of photocatalytic process.展开更多
The conversion of solar energy in a wide spectrum region to clean fuel,H_(2),remains a challenge in the field of photocatalysis.Herein,plasmonic TiN nanobelts,as a novel cocatalyst,were coupled with CdS nanoparticles ...The conversion of solar energy in a wide spectrum region to clean fuel,H_(2),remains a challenge in the field of photocatalysis.Herein,plasmonic TiN nanobelts,as a novel cocatalyst,were coupled with CdS nanoparticles to construct a 0D/1D CdS/TiN heterojunction.Utilization of the localized surface plasmon resonance(LSPR)effect generated from TiN nanobelts was effective in promoting light absorption in the near-infrared region,accelerating charge separation,and generating hot electrons,which can effectively improve the photocatalytic H_(2) generation activity of the 0D/1D CdS/TiN heterojunction over a wide spectral range.Furthermore,owing to the high metallicity and low work function,an ohmic-junction was formed between the CdS and TiN,favoring the transfer of hot electrons generated from TiN nanobelts the CdS nanoparticles,followed by the reaction with water to generate H_(2).Consequently,the 0D/1D CdS/TiN heterojunction demonstrated H_(2) generation activity even under light irradiation at 760 nm,while the pure CdS and Pt nanoparticles modified CdS presented no activity.This work opens a new insight into coupling plasmonic cocatalysts to realize full spectrum H_(2) production.展开更多
Designing and fabricating highly efficient photocatalysts for water splitting is a promising strategy to address energy and environmental issues.Cadmium sulfide(CdS)has received significant interest as a photocatalyst...Designing and fabricating highly efficient photocatalysts for water splitting is a promising strategy to address energy and environmental issues.Cadmium sulfide(CdS)has received significant interest as a photocatalyst for visible‐light‐induced hydrogen(H2)generation.However,the severe photocorrosion,high overpotential,rapid charge recombination,and sluggish surface reaction kinetics drastically hinder its practical application in water splitting.Herein,uniform zinc cadmium sulfide(Zn_(0.5)Cd_(0.5)S)nanoparticles were anchored on ultrathin Ni(OH)_(2)nanosheets via a facile solution‐phase approach to form an intimate two‐dimensional(2D)/zero‐dimensional(0D)heterojunction.Under visible light irradiation,the 7%Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S composite exhibited the highest H2 production rate of 6.87 mmol·h^(–1)·g^(–1)with an apparent quantum yield of 16.8%at 420 nm,which is almost 43 times higher than that of pristine Zn_(0.5)Cd_(0.5)S and considerably higher than that of the Pt/Zn_(0.5)Cd_(0.5)S photocatalyst.The high photoactivity of the 2D/0D Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S heterojunction can be ascribed to its unique and robust structure,wherein the ultrathin Ni(OH)_(2)nanosheets not only provide an excellent platform for the incorporation of Zn_(0.5)Cd_(0.5)S nanoparticles but also serve as an effective cocatalyst to promote photoinduced electron transfer and offer more active sites for photocatalytic H_(2) generation.This work paves the way toward the development of versatile,low‐cost,and highly efficient 2D/0D heterojunction photocatalysts for solar energy conversion.展开更多
Anchoring molecular cocatalysts on semiconductors has been recognized as a general strategy to boost the charge separation efficiency required for efficient photocatalysis.However,the effect of molecular cocatalysts o...Anchoring molecular cocatalysts on semiconductors has been recognized as a general strategy to boost the charge separation efficiency required for efficient photocatalysis.However,the effect of molecular cocatalysts on energy funneling(i.e.,directional energy transfer)inside semiconductor photocatalysts has not been demonstrated yet.Here we prepared CdS nanorods with both thin and thick rods and anchored the conjugated molecules 2‐mercaptobenzimidazole(MBI)and cobalt molecular catalysts(MCoA)sequentially onto the surface of nanorods.Transient absorption measurements revealed that MBI molecules facilitated energy funneling from thin to thick rods by the electronic coupling between thin and thick nanorods,which is essentially a light‐harvesting antenna approach to enhance the charge generation efficiency in the reaction center(here the thick rods).Moreover,MBI and MCoA molecules selectively extracted photogenerated holes and electrons of CdS nanorods rapidly,leading to efficient charge separation.Consequently,CdS/MBI/MCoA displayed 15 times enhanced photocatalytic H_(2) evolution(1.65 mL)than pure CdS(0.11 mL)over 3 h of illumination.The amount of H_(2) evolution reached 60 mL over 48 h of illumination with a high turnover number of 26294 and an apparent quantum efficiency of 71%at 420 nm.This study demonstrates a novel design principle for next‐generation photocatalysts.展开更多
Thermochemical two-step CO_(2) splitting is a potential approach that fixes the sustainable resource into transportable liquid fuels.However,the harsh CO_(2) splitting conditions,the limited oxygen release kinetics an...Thermochemical two-step CO_(2) splitting is a potential approach that fixes the sustainable resource into transportable liquid fuels.However,the harsh CO_(2) splitting conditions,the limited oxygen release kinetics and capacity of metal oxides block further promoted the CO yield and solar-to-fuel energy efficiency.Here,we propose a different carbon cycle assisted by Ni/La_(2)O_(3) via coupling methane decomposition with thermochemical CO_(2) splitting,replacing conventional metal oxides cycle.Superior performance was demonstrated with methane conversion reached around 94%with almost pure H_(2) generation.Encouragingly,CO_(2) conversion of 98%and CO yield of 6.9 mmol g^(-1) derived from CO_(2) were achieved,with peak CO evolution rate(402 mL min^(-1) g^(-1))of orders of magnitude higher than that in metal oxide process and outstanding thermodynamic solar-to-fuel energy efficiency(55.5%vs.18.5%).This was relevant to the synergistic activation of La_(2)O_(3) and Ni for CO_(2) in carbon cycle,thus improving CO_(2) splitting reaction with carbon species.展开更多
In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared all...In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.展开更多
Serpentinization reactions are paramount to understand hydro-geothermal activity near plate boundaries and mafic–ultramafic massifs,as well as fluid and element transfer between the Earth’s mantle and crust.However,...Serpentinization reactions are paramount to understand hydro-geothermal activity near plate boundaries and mafic–ultramafic massifs,as well as fluid and element transfer between the Earth’s mantle and crust.However,fluid-rock element exchange and serpentinization kinetics under shallow hydrothermal conditions is still largely unconstrained.Here we present two constant temperature(230℃)time-series of natural peridotite(77.5%olivine;13.7%enstatite;6.8%diopside;2%spinel)serpentinization experiments:at 13.4 MPa;and 20.7 MPa.Al-enriched lizardite was the main secondary mineral in all runs after olivine(olv)and orthopyroxene(opx)serpentinization(without any detectable brucite,talc or magnetite),while primary spinel and diopside partially dissolved during the experiments.Initial serpentinization stages comprises intrinsically coupled reactions between olivine and enstatite,as Al and Si are progressively transferred from orthopyroxene-derived to olivine-derived serpentine,while the opposite is true for Mg and Fe,with homogenization of serpentines compositions after 40 days.The Ni/Cr ratios of serpentines,however,remain diagnostic of the respective primary mineral.Estimated average serpentine content indicates fast serpentinization rates of 0.55 wt.%·day^(-1)(0.26 mmol·day^(-1))and 0.26 wt.%·day^(-1)(0.13 mmol·day^(-1))at 13.4 and 20.7 MPa,respectively.Approximately 2x faster serpentinization kinetics at lower pressure is likely linked to enhanced spinel dissolution leading to one order of magnitude higher available Al,which accelerates olivine serpentinization while delays orthopyroxene dissolution.Additionally,time-dependent increase in solid products masses suggests rock volume expands linearly 0.37%±0.01%per serpentine wt.%independently of pressure.Mass balance constrains suggests olv:opx react at~5:2 and~3:2 M ratios,resulting in Si-deficient and Si-saturated serpentines at the end of the low-pressure series(13.4 MPa)and high-pressure series(20.7 MPa),respectively.Elevated starting peridotite olv:opx ratio展开更多
Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle ...Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle as a superior H2-evolutoin cocatalyst was successfully grafted on the TiO2 surface to greatly boost its photocatalytic activity via one-step lactic acid-induced synthesis strategy.Herein,the lactic acid can induce the homogeneous production of amorphous MoSx(a-MoSx)nanoparticles from MoS42-precursor,while the symbiotic S2^-ions can be easily and availably self-adsorbed on the a-Mo Sxsurface,resulting in the formation of S2^--adsorbed a-Mo Sxnanoparticles with a small size of 0.5-3 nm.Photocatalytic results manifested that the S2^--adsorbed Mo Sxnanoparticles could dramatically facilitate the H2-generation rate of TiO2 photocatalysts(3452μmol h^-1 g^-1,AQE=16.5%).In situ irradiated XPS in conjunction with transient-state PL and photoelectrochemical tests reveal that the improved H_(2)-generation activity can be ascribed to the synergistic effect of boosted interfacial charge transfer from TiO_(2) to S^(2-)adsorbed Mo Sx and the superior H_(2)-evolution reaction on self-adsorbed S_(2-)ions.In addition,the S^(2-)-adsorbed Mo Sx nanoparticles can also act as the general H_(2)-generation cocatalyst to obviously promote the activity of other typical host photocatalysts such as g-C_(3) N_(4) and Cd S.This work provides an innovative approach to develop high-efficiency Mo Sx-based cocatalyst with boosted interfacial charge transfer toward highly efficient photocatalytic materials.展开更多
The synthesis of solar-driven chemical value-added products and the degradation of pollutants is a promising approach for sustainable development. However, achieving these works via photocatalysts with efficient charg...The synthesis of solar-driven chemical value-added products and the degradation of pollutants is a promising approach for sustainable development. However, achieving these works via photocatalysts with efficient charge-separation, photo-absorption is challenging. A yolk-shell CuCo_(2)S_(4)@Cu_(2)O Z-scheme nanoreactor (YS-CuCo_(2)S_(4)@Cu_(2) O-NR) with octahedron Cu_(2)O as the core and tubular CuCo2 S4 as the shell, has been synthesized by regulating composition and morphology. YS-CuCo_(2)S_(4)@Cu_(2)O-NR shows superior photocatalytic activities for producing H_(2) O_(2) collaborates by selective oxidation of benzyl alcohol (BA) to high value-added benzaldehyde (BAD)/utilized Fenton-like reaction to degrade multi-pollutants through space-confinement effect, reaching 80% conversion and 99% selectivity of BA, a yield of 12 mM g^(−1) for H_(2)O_(2) and above 90% degradation efficiency for multi-pollutants. A photocatalysis nanoconfinement reactor system is proposed and demonstrated by using yolk-shell to enhance the performance of the chemical reaction. Mechanism studies show that the yolk-shell provides confined space to accelerate redox reaction kinetics;while the inner void promotes light harvesting and keeps yolk Cu_(2) O from deactivation;combined with the Z-scheme charge transfer, engineering Cu^(+) /Cu^(2+) active composition, they are favorable for enhancing the H_(2) O_(2) generation and Fenton-like activity. These findings provide new opportunities for application of yolk-shell Z-scheme metal-oxide-based photocatalysts.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.21975110 and 21972058)Taishan Youth Scholar Program of Shandong Province
文摘The reasonable employment of cocatalyst in photocatalysis can effectively promote the photocatalytic H_(2)production activity.In this study,carbon hollow spheres(C),as a good conductive nonmetallic material,have been utilized as a novel cocatalyst and a matrix for loading the Cu-doped-TiO_(2)nanoparticles by a successive hydrother-mal method and metal molten salt method.The Cu-doped-TiO_(2)nanoparticles were tightly anchored on the surface of carbon hollow sphere to form a zero-dimensional/three dimensional(0D/3D)Cu-doped-TiO2/C heterojunction.The optimal Cu-doped-TiO_(2)/C heterojunction demon-strated greatly enhanced photocatalytic H_(2) generation activity(14.4 mmol·g^(-1)·h^(-1))compared with TiO_(2)(0.33 mmol·g^(-1)·h^(-1))and TiO_(2)/C(0.7 mmol·g^(-1)·h^(-1)).The performance improvement was mainly due to the syner-gistic effect of carbon hollow sphere cocatalyst and Cu-doping,the Cu-doping in TiO_(2)nanoparticles can minimize charge recombination and enhance the available photoex-cited electrons,while the 3D carbon hollow spheres can act as electron traps to accelerate the charge separation and offer abundant active sites for solar water splitting reaction.
基金Outstanding Talent Research Fund of Zhengzhou University,China Postdoctoral Science Foundation(Nos.2020TQ0277 and 2020M682328)Central Plains Science and Technology Innovation Leader Project(No.214200510006)Postdoctoral Science Foundation of Henan province(No.202002010).
文摘Two-dimensional(2D)semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers.Herein,a novel CoWO_(4)/g-C_(3)N_(4)(CWO/CN)p–n junction was synthesized using an electrostatic selfassembly method.The constructed 2D/2D p–n heterostructure had a rich hetero-interface,increased charge density,and fast separation efficiency of photoinduced carriers.The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism.Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field,ensuring an efficient separation and transfer process of photoinduced carriers.Under the optimized conditions,the CWO/CN heterojunction displayed enhanced photocatalytic H_(2)generation activity under full spectrum and visible lights irradiation,respectively.Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p–n type semiconductor for photocatalytic H_(2)generation.
文摘Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subjected to atomic-level structural engineering by doping with transition metals(M=Fe,Co,or Ni),which simultaneously induced the formation of metal-N active sites in the g-C_(3)N_(4)framework and modulated the bandgap of g-C_(3)N_(4).Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C_(3)N_(4)acted as an"electron transfer bridge",where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges,and the optimized bandgap of g-C_(3)N_(4)afforded stronger reduction ability and wider light absorption.As a result,doping with either Fe,Co,or Ni had a positive effect on the HER activity,where Co-doped g-C_(3)N_(4)exhibited the highest performance.The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.
基金National Natural Science Foundation of China,Grant/Award Number:21805166111 Project of China,Grant/Award Number:D20015+1 种基金Ministryof Education,Hubei province,China,Grant/Award Number:T2020004Foundation of Science and Technology Bureau of Yichang City,Grant/Award Number:A21‐3‐012。
文摘In spite of the numerous advances in the development of H_(2)and O_(2)evolutions upon water splitting,the separation of H_(2)from O_(2)still remains a severe challenge.Herein,the novel dual-functional nanocatalysts Pd/carbon nanosphere(CNS),obtained via immobilization of ultrafine Pd nanoparticles onto CNS,are developed and employed for both selective H_(2)generation from HCOOH dehydrogenation and O_(2)evolution from H_(2)O_(2)decomposition.In these reactions,the highest activities for Pd/CNS-800(i.e.,calcinated at 800℃)are 2478 h−1 and 993 min^(−1)for H_(2)and O_(2)evolution,respectively.The highly efficient and selective“on-off”switch for selective H_(2)generation from HCOOH is successfully realized by pH adjustment.This novel and highly efficient nanocatalyst Pd/CNS-800 not only provides new approaches for the promising application of HCOOH and H_(2)O_(2)as economic and safe H_(2)and O_(2)carriers,respectively,for fuel cells,but also promotes the development of“on-off”switch for on-demand H_(2)evolution.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1862105,22108214,22050410267)Natural Science Basic Research Plan in Shaanxi Province of China(Grant Nos.2017JZ001,2018KJXX-008)+3 种基金Fundamental Research Funds for the Central Universities(Grant No.cxtd2017004)China Postdoctoral Science Foundation(Grant No.2021TQ0262)the Promotion Plan for Young People of Shaanxi Association for Science and Technology(20210605)K.C.Wong Education Foundation,Hong Kong,China。
文摘In this work,a novel NiP_(2)/g-C_(3)N_(4)heterojunction via homogeneous precipitation method assisted by thermal phosphorization reaction was designed and constructed,and the optimized sample showed the excellent photocatalytic H_(2)evolution activity under visible-light irradiation,which was nearly 112 times higher than that of pristine g-C_(3)N_(4)sample.Experimental characterizations and DFT calculations demonstrated that the NiP_(2)nanoparticles covered on the g-C_(3)N_(4)surface can form a built-in electric field at the interface to accelerate the transfer of photoexcited electrons from g-C_(3)N_(4)to NiP_(2),crucial for hindering the recombination of electron-hole pairs.Moreover,the energy barrier of hydrogen evolution reaction can also vastly reduce when combined NiP_(2)and g-C_(3)N_(4)to construct NiP_(2)/g-C_(3)N_(4)heterojunction.This work represents a method through combing experimental and theoretical tools to thoroughly investigate the mechanism of photocatalytic process.
基金sustained by the National Natural Science Foundation of China(Nos.21975110 and 21972058)financial support from Taishan Youth Scholar Program of Shandong Provincesupported by the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(No.SKLPEE-KF202102)。
文摘The conversion of solar energy in a wide spectrum region to clean fuel,H_(2),remains a challenge in the field of photocatalysis.Herein,plasmonic TiN nanobelts,as a novel cocatalyst,were coupled with CdS nanoparticles to construct a 0D/1D CdS/TiN heterojunction.Utilization of the localized surface plasmon resonance(LSPR)effect generated from TiN nanobelts was effective in promoting light absorption in the near-infrared region,accelerating charge separation,and generating hot electrons,which can effectively improve the photocatalytic H_(2) generation activity of the 0D/1D CdS/TiN heterojunction over a wide spectral range.Furthermore,owing to the high metallicity and low work function,an ohmic-junction was formed between the CdS and TiN,favoring the transfer of hot electrons generated from TiN nanobelts the CdS nanoparticles,followed by the reaction with water to generate H_(2).Consequently,the 0D/1D CdS/TiN heterojunction demonstrated H_(2) generation activity even under light irradiation at 760 nm,while the pure CdS and Pt nanoparticles modified CdS presented no activity.This work opens a new insight into coupling plasmonic cocatalysts to realize full spectrum H_(2) production.
文摘Designing and fabricating highly efficient photocatalysts for water splitting is a promising strategy to address energy and environmental issues.Cadmium sulfide(CdS)has received significant interest as a photocatalyst for visible‐light‐induced hydrogen(H2)generation.However,the severe photocorrosion,high overpotential,rapid charge recombination,and sluggish surface reaction kinetics drastically hinder its practical application in water splitting.Herein,uniform zinc cadmium sulfide(Zn_(0.5)Cd_(0.5)S)nanoparticles were anchored on ultrathin Ni(OH)_(2)nanosheets via a facile solution‐phase approach to form an intimate two‐dimensional(2D)/zero‐dimensional(0D)heterojunction.Under visible light irradiation,the 7%Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S composite exhibited the highest H2 production rate of 6.87 mmol·h^(–1)·g^(–1)with an apparent quantum yield of 16.8%at 420 nm,which is almost 43 times higher than that of pristine Zn_(0.5)Cd_(0.5)S and considerably higher than that of the Pt/Zn_(0.5)Cd_(0.5)S photocatalyst.The high photoactivity of the 2D/0D Ni(OH)_(2)/Zn_(0.5)Cd_(0.5)S heterojunction can be ascribed to its unique and robust structure,wherein the ultrathin Ni(OH)_(2)nanosheets not only provide an excellent platform for the incorporation of Zn_(0.5)Cd_(0.5)S nanoparticles but also serve as an effective cocatalyst to promote photoinduced electron transfer and offer more active sites for photocatalytic H_(2) generation.This work paves the way toward the development of versatile,low‐cost,and highly efficient 2D/0D heterojunction photocatalysts for solar energy conversion.
文摘Anchoring molecular cocatalysts on semiconductors has been recognized as a general strategy to boost the charge separation efficiency required for efficient photocatalysis.However,the effect of molecular cocatalysts on energy funneling(i.e.,directional energy transfer)inside semiconductor photocatalysts has not been demonstrated yet.Here we prepared CdS nanorods with both thin and thick rods and anchored the conjugated molecules 2‐mercaptobenzimidazole(MBI)and cobalt molecular catalysts(MCoA)sequentially onto the surface of nanorods.Transient absorption measurements revealed that MBI molecules facilitated energy funneling from thin to thick rods by the electronic coupling between thin and thick nanorods,which is essentially a light‐harvesting antenna approach to enhance the charge generation efficiency in the reaction center(here the thick rods).Moreover,MBI and MCoA molecules selectively extracted photogenerated holes and electrons of CdS nanorods rapidly,leading to efficient charge separation.Consequently,CdS/MBI/MCoA displayed 15 times enhanced photocatalytic H_(2) evolution(1.65 mL)than pure CdS(0.11 mL)over 3 h of illumination.The amount of H_(2) evolution reached 60 mL over 48 h of illumination with a high turnover number of 26294 and an apparent quantum efficiency of 71%at 420 nm.This study demonstrates a novel design principle for next‐generation photocatalysts.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100)the National Key R&D Program of China(2016YFA0202-801)+1 种基金the National Natural Science Foundation of China(NSFC)grants(21676269,21706254,21878283,22022814)the Dalian Institute of Chemical Physics,CAS(DICP I201916)。
文摘Thermochemical two-step CO_(2) splitting is a potential approach that fixes the sustainable resource into transportable liquid fuels.However,the harsh CO_(2) splitting conditions,the limited oxygen release kinetics and capacity of metal oxides block further promoted the CO yield and solar-to-fuel energy efficiency.Here,we propose a different carbon cycle assisted by Ni/La_(2)O_(3) via coupling methane decomposition with thermochemical CO_(2) splitting,replacing conventional metal oxides cycle.Superior performance was demonstrated with methane conversion reached around 94%with almost pure H_(2) generation.Encouragingly,CO_(2) conversion of 98%and CO yield of 6.9 mmol g^(-1) derived from CO_(2) were achieved,with peak CO evolution rate(402 mL min^(-1) g^(-1))of orders of magnitude higher than that in metal oxide process and outstanding thermodynamic solar-to-fuel energy efficiency(55.5%vs.18.5%).This was relevant to the synergistic activation of La_(2)O_(3) and Ni for CO_(2) in carbon cycle,thus improving CO_(2) splitting reaction with carbon species.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51704188,51702199,61705125,51802181)the State Key Laboratory of Solidification Processing in NWPU(Grant No.SKLSP201809)+2 种基金Natural Science Foundation of Shaanxi Province(Grant No.2019JQ-099)Research Starting Foundation from Shaanxi University of Science and Technology(Grant No.2016GBJ-04)the financial support of China Scholarship Council(Grant No.201808610089)。
文摘In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.
基金We thank Petrobras for sponsoring the grad studies of the main author and its financial support through project 8310-0 FAURGS-UFRGS-PETROBRAS.
文摘Serpentinization reactions are paramount to understand hydro-geothermal activity near plate boundaries and mafic–ultramafic massifs,as well as fluid and element transfer between the Earth’s mantle and crust.However,fluid-rock element exchange and serpentinization kinetics under shallow hydrothermal conditions is still largely unconstrained.Here we present two constant temperature(230℃)time-series of natural peridotite(77.5%olivine;13.7%enstatite;6.8%diopside;2%spinel)serpentinization experiments:at 13.4 MPa;and 20.7 MPa.Al-enriched lizardite was the main secondary mineral in all runs after olivine(olv)and orthopyroxene(opx)serpentinization(without any detectable brucite,talc or magnetite),while primary spinel and diopside partially dissolved during the experiments.Initial serpentinization stages comprises intrinsically coupled reactions between olivine and enstatite,as Al and Si are progressively transferred from orthopyroxene-derived to olivine-derived serpentine,while the opposite is true for Mg and Fe,with homogenization of serpentines compositions after 40 days.The Ni/Cr ratios of serpentines,however,remain diagnostic of the respective primary mineral.Estimated average serpentine content indicates fast serpentinization rates of 0.55 wt.%·day^(-1)(0.26 mmol·day^(-1))and 0.26 wt.%·day^(-1)(0.13 mmol·day^(-1))at 13.4 and 20.7 MPa,respectively.Approximately 2x faster serpentinization kinetics at lower pressure is likely linked to enhanced spinel dissolution leading to one order of magnitude higher available Al,which accelerates olivine serpentinization while delays orthopyroxene dissolution.Additionally,time-dependent increase in solid products masses suggests rock volume expands linearly 0.37%±0.01%per serpentine wt.%independently of pressure.Mass balance constrains suggests olv:opx react at~5:2 and~3:2 M ratios,resulting in Si-deficient and Si-saturated serpentines at the end of the low-pressure series(13.4 MPa)and high-pressure series(20.7 MPa),respectively.Elevated starting peridotite olv:opx ratio
基金financially supported by the National Natural Science Foundation of China(Nos.51872221 and 21771142)the Fundamental Research Funds for the Central Universities(No.WUT 2019IB002)。
文摘Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle as a superior H2-evolutoin cocatalyst was successfully grafted on the TiO2 surface to greatly boost its photocatalytic activity via one-step lactic acid-induced synthesis strategy.Herein,the lactic acid can induce the homogeneous production of amorphous MoSx(a-MoSx)nanoparticles from MoS42-precursor,while the symbiotic S2^-ions can be easily and availably self-adsorbed on the a-Mo Sxsurface,resulting in the formation of S2^--adsorbed a-Mo Sxnanoparticles with a small size of 0.5-3 nm.Photocatalytic results manifested that the S2^--adsorbed Mo Sxnanoparticles could dramatically facilitate the H2-generation rate of TiO2 photocatalysts(3452μmol h^-1 g^-1,AQE=16.5%).In situ irradiated XPS in conjunction with transient-state PL and photoelectrochemical tests reveal that the improved H_(2)-generation activity can be ascribed to the synergistic effect of boosted interfacial charge transfer from TiO_(2) to S^(2-)adsorbed Mo Sx and the superior H_(2)-evolution reaction on self-adsorbed S_(2-)ions.In addition,the S^(2-)-adsorbed Mo Sx nanoparticles can also act as the general H_(2)-generation cocatalyst to obviously promote the activity of other typical host photocatalysts such as g-C_(3) N_(4) and Cd S.This work provides an innovative approach to develop high-efficiency Mo Sx-based cocatalyst with boosted interfacial charge transfer toward highly efficient photocatalytic materials.
基金supported by the National Nature Science Foundation of China(Nos.NSFC52072164 and NSFC 32102086)Liaoning Province Science and Technology Planning Project(No.20180551203).
文摘The synthesis of solar-driven chemical value-added products and the degradation of pollutants is a promising approach for sustainable development. However, achieving these works via photocatalysts with efficient charge-separation, photo-absorption is challenging. A yolk-shell CuCo_(2)S_(4)@Cu_(2)O Z-scheme nanoreactor (YS-CuCo_(2)S_(4)@Cu_(2) O-NR) with octahedron Cu_(2)O as the core and tubular CuCo2 S4 as the shell, has been synthesized by regulating composition and morphology. YS-CuCo_(2)S_(4)@Cu_(2)O-NR shows superior photocatalytic activities for producing H_(2) O_(2) collaborates by selective oxidation of benzyl alcohol (BA) to high value-added benzaldehyde (BAD)/utilized Fenton-like reaction to degrade multi-pollutants through space-confinement effect, reaching 80% conversion and 99% selectivity of BA, a yield of 12 mM g^(−1) for H_(2)O_(2) and above 90% degradation efficiency for multi-pollutants. A photocatalysis nanoconfinement reactor system is proposed and demonstrated by using yolk-shell to enhance the performance of the chemical reaction. Mechanism studies show that the yolk-shell provides confined space to accelerate redox reaction kinetics;while the inner void promotes light harvesting and keeps yolk Cu_(2) O from deactivation;combined with the Z-scheme charge transfer, engineering Cu^(+) /Cu^(2+) active composition, they are favorable for enhancing the H_(2) O_(2) generation and Fenton-like activity. These findings provide new opportunities for application of yolk-shell Z-scheme metal-oxide-based photocatalysts.