In this paper, we investigate the stator wake variability along the axial direction under different rotating speeds and mass flow conditions, in the terms of wake-core position, wake depth, wake width and wake velocit...In this paper, we investigate the stator wake variability along the axial direction under different rotating speeds and mass flow conditions, in the terms of wake-core position, wake depth, wake width and wake velocity gradient. Experimental study is carried out in a single stage axial compressor by using Hot-wire Anemometer (HWA). Simultaneously, the numerical calculation is brought out in the same experiment rig. Firstly, we analyze the time-averaged velocity and radial vorticity at different axial positions, and explore the wake variability along the axial direction. Then, we present the effects of operation conditions on the wake-core position, and find out the inlet Mach number and incident angle are both the key influence factors of the wake-core position. Finally, we summarize four preliminary conclusions of the wake variability.展开更多
文摘In this paper, we investigate the stator wake variability along the axial direction under different rotating speeds and mass flow conditions, in the terms of wake-core position, wake depth, wake width and wake velocity gradient. Experimental study is carried out in a single stage axial compressor by using Hot-wire Anemometer (HWA). Simultaneously, the numerical calculation is brought out in the same experiment rig. Firstly, we analyze the time-averaged velocity and radial vorticity at different axial positions, and explore the wake variability along the axial direction. Then, we present the effects of operation conditions on the wake-core position, and find out the inlet Mach number and incident angle are both the key influence factors of the wake-core position. Finally, we summarize four preliminary conclusions of the wake variability.