Vy2Vδ2 T (also known as Vy9Vδ2 T) cells exist only in primates, and in humans represent a major yδ T-cell sub-population in the total population of circulating yδ T cells. Results from recent studies suggest tha...Vy2Vδ2 T (also known as Vy9Vδ2 T) cells exist only in primates, and in humans represent a major yδ T-cell sub-population in the total population of circulating yδ T cells. Results from recent studies suggest that while (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen from Mycobacterium tuberculosis (Mtb) and other microbes activates and expands primate Vy2Vδ2 T cells, the Vy2Vδ2 T-cell receptor (TCR) recognizes and binds to HMBPP on antigen-presenting cells (APC). In response to HMBPP stimulus, Vy2V82 TCRs array to form signaling-related nanoclusters or nanodomains during the activation of Vy2V82 T cells. Primary infections with H MBPP-producing pathogens drive the evolution of multieffector functional responses in Vy2Vδ2 T cells, although Vy2V82 T cells display different patterns of responses during the acute and chronic phases of Mtb infection and in other infections. Expanded Vy2Vδ2 T cells in primary Mtb infection can exhibit a broader TCR repertoire and a greater clonal response than previously assumed, with different distribution patterns of Vδ,2Vδ2 T-cell clones in lymphoid and non-lymphoid compartments. Emerging in vivo data suggest that HMBPP activation of Vy2W2 T cells appears to impact other immune cells during infection.展开更多
文摘Vy2Vδ2 T (also known as Vy9Vδ2 T) cells exist only in primates, and in humans represent a major yδ T-cell sub-population in the total population of circulating yδ T cells. Results from recent studies suggest that while (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) phosphoantigen from Mycobacterium tuberculosis (Mtb) and other microbes activates and expands primate Vy2Vδ2 T cells, the Vy2Vδ2 T-cell receptor (TCR) recognizes and binds to HMBPP on antigen-presenting cells (APC). In response to HMBPP stimulus, Vy2V82 TCRs array to form signaling-related nanoclusters or nanodomains during the activation of Vy2V82 T cells. Primary infections with H MBPP-producing pathogens drive the evolution of multieffector functional responses in Vy2Vδ2 T cells, although Vy2V82 T cells display different patterns of responses during the acute and chronic phases of Mtb infection and in other infections. Expanded Vy2Vδ2 T cells in primary Mtb infection can exhibit a broader TCR repertoire and a greater clonal response than previously assumed, with different distribution patterns of Vδ,2Vδ2 T-cell clones in lymphoid and non-lymphoid compartments. Emerging in vivo data suggest that HMBPP activation of Vy2W2 T cells appears to impact other immune cells during infection.