期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
Best Constants for Moser-Trudinger Inequalities,Fundamental Solutions and One-Parameter Representation Formulas on Groups of Heisenberg Type 被引量:8
1
作者 COHN William S. 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第2期375-390,共16页
We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplaci... We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18]. 展开更多
关键词 heisenberg group groups of heisenberg type Sobolev inequalities Moser-Trudinger inequalities Best constants One-Parameter representation formulas Fundamental solutions
原文传递
A Note on Hermite and Subelliptic Operators 被引量:7
2
作者 Der Chen CHANG Jing Zhi TIE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期803-818,共16页
In this note, we compute the fundamental solution for the Hermite operator with singularity at an arbitrary point y∈R^n. We also apply this result to obtain the fundamental solutions for the Grushin operator in R^2 a... In this note, we compute the fundamental solution for the Hermite operator with singularity at an arbitrary point y∈R^n. We also apply this result to obtain the fundamental solutions for the Grushin operator in R^2 and the sub-Laplacian in the Heisenberg group Hn. 展开更多
关键词 Hermite operator heisenberg group SUB-LAPLACIAN Gruhsin operator Heat kernel Laguerre function
原文传递
关于Heisenberg群上次Laplace算子的唯一延拓性 被引量:5
3
作者 韩静 戴绍虞 潘一飞 《系统科学与数学》 CSCD 北大核心 2008年第1期99-106,共8页
在Heisenberg群H^n中对微分不等式|Δ_(H^n)u|≤C/(d(z,t)~2)φ|u|的非负解证明了某个唯一延拓性结果.
关键词 唯一延拓性 heisenberg 次LAPLACE算子
原文传递
Littlewood Paley g-function on the Heisenberg Group 被引量:6
4
作者 He Ping LIU Rui Qin MA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第1期95-100,共6页
We consider the g-function related to a class of radial functions which gives a characterization of the L^p-norm of a function on the Heisenberg group.
关键词 heisenberg group G-FUNCTION
原文传递
Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group
5
作者 Huimin Cheng Feng Zhou 《Advances in Pure Mathematics》 2024年第9期744-758,共15页
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be... In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group. 展开更多
关键词 heisenberg group Sub-Elliptic Equations REGULARITY Besov Spaces
下载PDF
Sharp estimates for Hardy operators on Heisenberg group 被引量:4
6
作者 Qingyan WU Zunwei FU 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第1期155-172,共18页
In the setting of the Heisenberg group, based on the rotation method, we obtain the sharp (p,p) estimate for the Hardy operator. It will be shown that the norm of the Hardy operator on LP(Hn) is still p/(p- 1). ... In the setting of the Heisenberg group, based on the rotation method, we obtain the sharp (p,p) estimate for the Hardy operator. It will be shown that the norm of the Hardy operator on LP(Hn) is still p/(p- 1). This goes some way to imply that the Lp norms of the Hardy operator are the same despite the domains are intervals on R, balls in Rn, or ‘ellipsoids' on the Heisenberg group Hn. By constructing a special function, we find the best constant in the weak type (1, 1) inequality for the Hardy operator. Using the translation approach, we establish the boundedness for the Hardy operator from H1 to L1. Moreover, we describe the difference between Mp weights and Ap weights and obtain the characterizations of such weights using the weighted Hardy inequalities. 展开更多
关键词 heisenberg group Hardy operator Mp weight
原文传递
Heisenberg群中带奇异权的最优临界Hardy-Trudinger-Moser不等式
7
作者 蔺闯 胡云云 窦井波 《纯粹数学与应用数学》 2024年第1期27-43,共17页
本文建立了Heisenberg群中有界域和一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.克服临界Hardy不等式和奇异权函数带来的困难,利用带奇异权的Trudinger-Moser不等式和一些基本估计建立了有界域上一般的带奇异权的临界Ha... 本文建立了Heisenberg群中有界域和一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.克服临界Hardy不等式和奇异权函数带来的困难,利用带奇异权的Trudinger-Moser不等式和一些基本估计建立了有界域上一般的带奇异权的临界Hardy-Trudinger-Moser不等式,并通过选取适当的Moser函数得到了最佳常数.最后,利用分割积分区域的方法得到了一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式. 展开更多
关键词 heisenberg 奇异权函数 Trudinger-Moser不等式 Hardy-Trudinger-Moser不等式 最佳常数
下载PDF
幂零根基为Heisenberg代数的可解完备李代数的自同构群 被引量:3
8
作者 邹慧超 《曲阜师范大学学报(自然科学版)》 CAS 1999年第1期23-25,共3页
给出了复数域C上幂零根基为Heisenberg代数的有限维可解完备李代数的自同构群
关键词 幂零根基 heisenberg代数 自同构群 李代数
下载PDF
Affine Connections and Gauss-Bonnet Theorems in the Heisenberg Group
9
作者 WANG Yong 《数学进展》 CSCD 北大核心 2024年第5期1103-1119,共17页
In this paper,we compute sub-Riemannian limits of Gaussian curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for a Euclidean C2-smooth surface in the Heisenberg gro... In this paper,we compute sub-Riemannian limits of Gaussian curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for a Euclidean C2-smooth surface in the Heisenberg group away from characteristic points and signed geodesic curvature associated to two kinds of Schouten-Van Kampen affine connections and the adapted connection for Euclidean C2-smooth curves on surfaces.We get Gauss-Bonnet theorems associated to two kinds of Schouten-Van Kampen affine connections in the Heisenberg group. 展开更多
关键词 Schouten-Van Kampen affine connection the adapted connection Gauss-Bonnet theorem sub-Riemannian limit heisenberg group
原文传递
Nil_(3)空间中的极小仿射平移曲面
10
作者 于延华 栗倩荣 薛睿 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期1513-1520,共8页
Nil_(3)空间是带有Heisenberg群结构的黎曼空间.利用Heisenberg群的群算子构造Nil_(3)空间中的仿射平移曲面.仿射平移曲面是由两条平面曲线作为基线通过群运算生成的.由于群运算不具有交换性,选定一组基线可以生成两类不同的仿射平移曲... Nil_(3)空间是带有Heisenberg群结构的黎曼空间.利用Heisenberg群的群算子构造Nil_(3)空间中的仿射平移曲面.仿射平移曲面是由两条平面曲线作为基线通过群运算生成的.由于群运算不具有交换性,选定一组基线可以生成两类不同的仿射平移曲面.之后对这两种仿射平移曲面进行分类.利用常数变易法和欧拉待定指数函数法解曲面的平均曲率等于零时所对应的微分方程,并给出不同运算下极小仿射平移曲面的分类定理.最后给出一些具体的极小仿射平移曲面,并用Mathematica画出相应的图像. 展开更多
关键词 Nil_(3)空间 仿射平移曲面 极小曲面 heisenberg 平均曲率
下载PDF
Heisenberg群上的一类带余项的Hardy型不等式 被引量:4
11
作者 金永阳 韩亚洲 《数学物理学报(A辑)》 CSCD 北大核心 2011年第6期1592-1600,共9页
该文参考文献[1]中的有关方法,得到了Heisenberg群的有界区域上的一类带余项的Hardy型不等式.
关键词 改进型的Hardy不等式 heisenberg 次p-Laplace算子.
下载PDF
Heisenberg群上的一个A-caloric逼近定理:次二次增长情况
12
作者 牛蒙慧 廖冬妮 马东亮 《赣南师范大学学报》 2024年第6期14-18,共5页
A-caloric逼近技巧在研究非线性抛物方程组弱解的正则性中起着重要的作用.本文在次二次增长情形下研究Heisenberg群上的一个A-逼近定理,该结果将为研究Heisenberg群中非线性抛物方程组弱解的最优正则性奠定基础.
关键词 heisenberg A-caloric逼近技巧 次二次增长条件
下载PDF
一类带有奇异项的非局部次椭圆方程正解的存在性
13
作者 朱怡颖 索洪敏 《应用数学》 北大核心 2024年第4期903-911,共9页
本文研究Heisenberg群上含有奇异项的非局部的问题.利用变分方法和扰动方法,获得了当正参数较小时该问题两个正解的存在性结果.
关键词 奇异项 变分方法 非局部问题 heisenberg
下载PDF
一类Kirchhoff-Poisson系统在Heisenberg群上解的存在性
14
作者 郭加超 索洪敏 安育成 《南昌大学学报(理科版)》 CAS 2024年第1期1-13,共13页
在Heisenberg群上研究了一类临界的Kirchhoff-Poisson系统。由于存在临界和非局部项,导致空间嵌入不紧,在非线性项适当的假设下,通过变分方法克服了空间的紧性并且得到该系统至少存在一个解。在此基础上,借助形变引理和拓扑度理论,证明... 在Heisenberg群上研究了一类临界的Kirchhoff-Poisson系统。由于存在临界和非局部项,导致空间嵌入不紧,在非线性项适当的假设下,通过变分方法克服了空间的紧性并且得到该系统至少存在一个解。在此基础上,借助形变引理和拓扑度理论,证明了该解是一个变号解。 展开更多
关键词 heisenberg Kirchhoff-Poisson系统 变分方法 形变引理 拓扑度理论
下载PDF
不变张量技术在半线性椭圆与次椭圆偏微分方程解的分类中的应用
15
作者 麻希南 吴天 《中国科学:数学》 CSCD 北大核心 2024年第10期1627-1648,共22页
在研究椭圆或次椭圆偏微分方程的解的估计以及分类中,从20世纪70年代Obata开始发展起来的向量场方法是一个非常有用的方法.但是在不同的问题中,如何寻找所需要的向量场是一个十分技巧性的问题.本文通过引进不变张量技术与量纲守恒思想,... 在研究椭圆或次椭圆偏微分方程的解的估计以及分类中,从20世纪70年代Obata开始发展起来的向量场方法是一个非常有用的方法.但是在不同的问题中,如何寻找所需要的向量场是一个十分技巧性的问题.本文通过引进不变张量技术与量纲守恒思想,对于典型的几个半线性椭圆或次椭圆偏微分方程,找到合适的向量场,即得到所要的微分恒等式,从而得到相关解的分类定理.本文详细给出新旧方法的对比. 展开更多
关键词 不变张量 半线性椭圆方程 heisenberg
原文传递
Hausdorff Operators on the Heisenberg Group 被引量:3
16
作者 Jiu Hua GUO Li Jing SUN Fa You ZHAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第11期1703-1714,共12页
This paper is devoted to the high-dimensional and multilinear Hausdorff operators on the Heisenberg group Hn. The sharp bounds for the strong type (p,p) (1 〈 p 〈 ∞) estimates of n- dimensional Hausdorff operato... This paper is devoted to the high-dimensional and multilinear Hausdorff operators on the Heisenberg group Hn. The sharp bounds for the strong type (p,p) (1 〈 p 〈 ∞) estimates of n- dimensional Hausdorff operators on Hn are obtained. The sharp bounds for strong (p,p) estimates are further extended to multilinear cases. As an application, we derive the sharp constant for the multilinear Hardy operator on Hn. The weak type (p,p) (1 〈 p 〈 ∞) estimates are also obtained. 展开更多
关键词 Hausdorff operator heisenberg group MULTILINEAR sharp estimate
原文传递
L^p BOUNDEDNESS OF COMMUTATOR OPERATOR ASSOCIATED WITH SCHRDINGER OPERATORS ON HEISENBERG GROUP 被引量:3
17
作者 李澎涛 彭立中 《Acta Mathematica Scientia》 SCIE CSCD 2012年第2期568-578,共11页
Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. L... Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness. 展开更多
关键词 COMMUTATOR BMO heisenberg group BOUNDEDNESS Riesz transforms as-sociated to SchrSdinger operators
下载PDF
Characterizations of Sobolev spaces in Euclidean spaces and Heisenberg groups 被引量:3
18
作者 CUI Xiao-yue LAM Nguyen LU Guo-zhen 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期531-547,共17页
Recently, many new features of Sobolev spaces W k,p ?RN ? were studied in [4-6, 32]. This paper is devoted to giving a brief review of some known characterizations of Sobolev spaces in Euclidean spaces and describin... Recently, many new features of Sobolev spaces W k,p ?RN ? were studied in [4-6, 32]. This paper is devoted to giving a brief review of some known characterizations of Sobolev spaces in Euclidean spaces and describing our recent study of new characterizations of Sobolev spaces on both Heisenberg groups and Euclidean spaces obtained in [12] and [13] and outlining their proofs. Our results extend those characterizations of first order Sobolev spaces in [32] to the Heisenberg group setting. Moreover, our theorems also provide diff erent characterizations for the second order Sobolev spaces in Euclidean spaces from those in [4, 5]. 展开更多
关键词 characterization of Sobelev spaces Folland-Stein space Poincar′e inequalities heisenberg group second order Sobolev space
下载PDF
Laguerre calculus and Paneitz operator on the Heisenberg group 被引量:3
19
作者 CHANG Der-Chen 《Science China Mathematics》 SCIE 2009年第12期2549-2569,共21页
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to f... Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows: $$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $$ Here “Z j ” j=1 n is an orthonormal basis for the subbundle T (1,0) of the complex tangent bundle T ?(H n ) and T is the “missing direction”. The operator $ \mathcal{L}_\alpha $ is the sub-Laplacian on the Heisenberg group which is sub-elliptic if α does not belong to an exceptional set Λ α . We also construct projection operators and relative fundamental solution for the operator $ \mathcal{L}_\alpha $ while α ∈ Λ α . 展开更多
关键词 Paneitz operator heisenberg group Laguerre calculus fundamental solution heat kernel SPECTRUM 35H20 53C44
原文传递
The Equivalence of Certain Norms on the Heisenberg Group
20
作者 Murphy E. Egwe 《Advances in Pure Mathematics》 2013年第6期576-578,共3页
Let IHn be the (2n+1)-dimensional Heisenberg group. In this paper, we shall give among other things, the properties of some homogeneous norms relative to dilations on the IHn and prove the equivalence of these norms.
关键词 heisenberg group heisenberg Norms Equivalent Norms HOMOGENEOUS group
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部