Expounded in this survey article is a series of refinements and generalizations of Hilbert's inequalities mostly published during the years 1990 through 2002.Those inequalities concerned may be classified into sev...Expounded in this survey article is a series of refinements and generalizations of Hilbert's inequalities mostly published during the years 1990 through 2002.Those inequalities concerned may be classified into several types (discrete and integral etc.), and various related results obtained respectively by L. C. Hsu, M. Z. Gao, B. C. Yang, J. C. Kuang, Hu Ke and H. Hong et.al are described a little more precisely. Moreover, earlier and recent extensions of Hilbert-type inequalities are also stated for reference. And the new trend and the research ways are also brought forward.展开更多
In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's typ...In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.展开更多
In this paper, by introducing three parameters a, b and λ, we give some new generalizations of Hardy-Hilbert’s integral inequality. As applications, we con-sider its equivalent form and some particular results.
In this paper, it is shown that Hardy-Hilbert's integral inequality with parameter is improved by means of a sharpening of Hoeder's inequality. A new inequality is established as follows:∫^∞α∫^∞α f(x)g(y)...In this paper, it is shown that Hardy-Hilbert's integral inequality with parameter is improved by means of a sharpening of Hoeder's inequality. A new inequality is established as follows:∫^∞α∫^∞α f(x)g(y)/(x+y+2β)dxdy〈π/sin(π/p){∫^∞α f^p(x)dx}1/p·{∫^∞αgq(x)dx}1/q·(1-R)^m,where R=(Sp (F, h) - Sq (G, h))^2, m= min (1/p, 1/q). As application; an extension of Hardy-Littlewood's inequality is given.展开更多
In this paper, by introducing some parameters and estimating the weight coefficients, we give a new generalization of Hardy-Hilbert’s type inequality with the best constant factor. As applications, we consider its eq...In this paper, by introducing some parameters and estimating the weight coefficients, we give a new generalization of Hardy-Hilbert’s type inequality with the best constant factor. As applications, we consider its equivalent form and obtain some recent results, which are special cases of our results.展开更多
In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
文摘Expounded in this survey article is a series of refinements and generalizations of Hilbert's inequalities mostly published during the years 1990 through 2002.Those inequalities concerned may be classified into several types (discrete and integral etc.), and various related results obtained respectively by L. C. Hsu, M. Z. Gao, B. C. Yang, J. C. Kuang, Hu Ke and H. Hong et.al are described a little more precisely. Moreover, earlier and recent extensions of Hilbert-type inequalities are also stated for reference. And the new trend and the research ways are also brought forward.
文摘In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.
基金Foundation item:The NSF (0177) of Guangdong Institutions of Higher Learning,College and University
文摘In this paper, by introducing three parameters a, b and λ, we give some new generalizations of Hardy-Hilbert’s integral inequality. As applications, we con-sider its equivalent form and some particular results.
文摘In this paper, it is shown that Hardy-Hilbert's integral inequality with parameter is improved by means of a sharpening of Hoeder's inequality. A new inequality is established as follows:∫^∞α∫^∞α f(x)g(y)/(x+y+2β)dxdy〈π/sin(π/p){∫^∞α f^p(x)dx}1/p·{∫^∞αgq(x)dx}1/q·(1-R)^m,where R=(Sp (F, h) - Sq (G, h))^2, m= min (1/p, 1/q). As application; an extension of Hardy-Littlewood's inequality is given.
文摘In this paper, by introducing some parameters and estimating the weight coefficients, we give a new generalization of Hardy-Hilbert’s type inequality with the best constant factor. As applications, we consider its equivalent form and obtain some recent results, which are special cases of our results.
文摘In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.