Seeds of a Chinese traditional medicine plant, Cochinchina momordica were used in the present study for the improvement of influenza vaccine (HSN 1) in chicken. Crude extraction from Cochinchina momordica seed (ECM...Seeds of a Chinese traditional medicine plant, Cochinchina momordica were used in the present study for the improvement of influenza vaccine (HSN 1) in chicken. Crude extraction from Cochinchina momordica seed (ECMS) was obtained by ethanol extraction method. In experiment No. 1, two weeks old chickens were immunized with influenza vaccine (HSN1) alone or combined with ECMS (5, 10, 20, 40 and 80 μg/dose). Serum IgG antibody levels (by ELISA) as well as effects on dally weight gain were measured on 0, 7, 14 and 28th day after immunization. Results revealed that all ECMS groups numerically increased the antibody levels while 10 and 20 μg/dose groups significantly (P〈0.05) enhanced total IgG antibody on day 28, when compared with control. Average daily weight gain was also significantly higher in 20 μg/dose ECMS group. Adjuvant effect was also confirmed in experiment No. 2 when chickens were immunized with 20 μg/dose ECMS and antibody titer was measured through hemagglutination inhibition (HI). It is concluded that ECMS has potential to improve the immune responses and deserve further study as an adjuvant.展开更多
建立一种便捷、灵敏的检测方法,即逆转录环介导等温核酸扩增技术(RT-LAMP)用于H5N1亚型禽流感病毒基因检测。该技术使用特异对应于靶序列中8个基因区段的6条特异引物,在等温条件下进行核酸扩增反应。对51份实验感染动物及病毒培养标本的...建立一种便捷、灵敏的检测方法,即逆转录环介导等温核酸扩增技术(RT-LAMP)用于H5N1亚型禽流感病毒基因检测。该技术使用特异对应于靶序列中8个基因区段的6条特异引物,在等温条件下进行核酸扩增反应。对51份实验感染动物及病毒培养标本的H5N1亚型禽流感病毒的HA、NA基因区进行了RT-LAMP检测,并以SYBR Green I为反应指示剂进行了逆转录环介导等温核酸扩增技术,对该反应进行实时监控,经对扩增产物做内切酶验证和测序分析,证明RT-LAMP技术的特异性;同时,用10倍系列稀释的RNA样品对该检测方法的灵敏度进行了测试。结果显示:利用RT-LAMP技术成功检测到H5N1禽流感病毒的HA、NA基因区,且RT-LAMP与Real-time PCR结果呈现很好的一致性。此方法的灵敏度可达到能检测10个拷贝RNA分子水平。因此,RT-LAMP技术应用于H5N1亚型禽流感病毒的快速检测是一种可行的方法。展开更多
H5N1 highly pathogenic avian influenza virus was first detected in a goose in Guangdong Province of China in 1996. Multiple genotypes of H5N1 viruses have been identified from apparently healthy waterfowl since 1999. ...H5N1 highly pathogenic avian influenza virus was first detected in a goose in Guangdong Province of China in 1996. Multiple genotypes of H5N1 viruses have been identified from apparently healthy waterfowl since 1999. In the years 2004-2008, over 100 outbreaks in domestic poultry occurred in 23 provinces and caused severe economic damage to the poultry industry in China. Beginning from 2004, a culling plus vaccination strategy has been implemented for the control of epidemics. Since then, over 35420000 poultry have been depopulated, and over 55 billion doses of the different vaccines have been used to control the outbreaks. Although it is logistically impossible to vaccinate every single bird in China due to the large poultry population and the complicated rearing styles, there is no doubt that the increased vaccination coverage has resulted in decreased disease epidemic and environmental virus loading. The experience in China suggests that vaccination has played an important role in the protection of poultry from H5N1 virus infection, the reduction of virus load in the environment, and the prevention of H5N1 virus transmission from poultry to humans.展开更多
All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortalit...All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties.展开更多
基金Project(No.2004C32047) supported by the Department of Scienceand Technology of Zhejiang Province,China
文摘Seeds of a Chinese traditional medicine plant, Cochinchina momordica were used in the present study for the improvement of influenza vaccine (HSN 1) in chicken. Crude extraction from Cochinchina momordica seed (ECMS) was obtained by ethanol extraction method. In experiment No. 1, two weeks old chickens were immunized with influenza vaccine (HSN1) alone or combined with ECMS (5, 10, 20, 40 and 80 μg/dose). Serum IgG antibody levels (by ELISA) as well as effects on dally weight gain were measured on 0, 7, 14 and 28th day after immunization. Results revealed that all ECMS groups numerically increased the antibody levels while 10 and 20 μg/dose groups significantly (P〈0.05) enhanced total IgG antibody on day 28, when compared with control. Average daily weight gain was also significantly higher in 20 μg/dose ECMS group. Adjuvant effect was also confirmed in experiment No. 2 when chickens were immunized with 20 μg/dose ECMS and antibody titer was measured through hemagglutination inhibition (HI). It is concluded that ECMS has potential to improve the immune responses and deserve further study as an adjuvant.
文摘建立一种便捷、灵敏的检测方法,即逆转录环介导等温核酸扩增技术(RT-LAMP)用于H5N1亚型禽流感病毒基因检测。该技术使用特异对应于靶序列中8个基因区段的6条特异引物,在等温条件下进行核酸扩增反应。对51份实验感染动物及病毒培养标本的H5N1亚型禽流感病毒的HA、NA基因区进行了RT-LAMP检测,并以SYBR Green I为反应指示剂进行了逆转录环介导等温核酸扩增技术,对该反应进行实时监控,经对扩增产物做内切酶验证和测序分析,证明RT-LAMP技术的特异性;同时,用10倍系列稀释的RNA样品对该检测方法的灵敏度进行了测试。结果显示:利用RT-LAMP技术成功检测到H5N1禽流感病毒的HA、NA基因区,且RT-LAMP与Real-time PCR结果呈现很好的一致性。此方法的灵敏度可达到能检测10个拷贝RNA分子水平。因此,RT-LAMP技术应用于H5N1亚型禽流感病毒的快速检测是一种可行的方法。
基金Supported by the Key Animal Infectious Disease Control Program of the Ministry of Agriculture, the Chinese National S&T Plan(Grant No. 2004BA519A-57)National Key Basic Research and Development Program of China (Grant Nos: 2005CB523005, 2005CB523200).
文摘H5N1 highly pathogenic avian influenza virus was first detected in a goose in Guangdong Province of China in 1996. Multiple genotypes of H5N1 viruses have been identified from apparently healthy waterfowl since 1999. In the years 2004-2008, over 100 outbreaks in domestic poultry occurred in 23 provinces and caused severe economic damage to the poultry industry in China. Beginning from 2004, a culling plus vaccination strategy has been implemented for the control of epidemics. Since then, over 35420000 poultry have been depopulated, and over 55 billion doses of the different vaccines have been used to control the outbreaks. Although it is logistically impossible to vaccinate every single bird in China due to the large poultry population and the complicated rearing styles, there is no doubt that the increased vaccination coverage has resulted in decreased disease epidemic and environmental virus loading. The experience in China suggests that vaccination has played an important role in the protection of poultry from H5N1 virus infection, the reduction of virus load in the environment, and the prevention of H5N1 virus transmission from poultry to humans.
基金supported by The Research Grants Council of The HongKong SAR Government (7488/05M) the Research Fund for the Control of Infectious Diseases of the Health, Welfare and Food Bureauof the Hong Kong SAR Government, the Li Ka Shing Foundation+1 种基金the Providence Foundation in memory of The late Dr. Lui Hac Minhgrants from The National Natural Science Foundation of China(30571674, 30771988)~~
基金Acknowledgments We thank Susan Watson for editing the manuscript and those in our laboratories who contributed to the data cited in this review. We also thank Ryo Takano for the preparation of figures. Research in HC's group is supported by the Ministry of Science and Technology, China (2004BA519A-57, 2006BAD06A05). Research in GFG's group is supported by the Ministry of Science and Technology, China (MOST, 2005CB523001 and 2006BAD06A01), the National Natural Science Foundation of China (NSFC, Grant #3059934, #30525010) and the US National Institutes of Health (U19 AI051915-05S1). Research in YS's group is supported by the Ministry of Science and Technology, China (MOST, 2005CB523006 and 2006BAD06A15), and the National Natural Science Foundation of China (NSFC, Grant #30599433). Research in YK's group is supported by National Institute of Allergy and Infectious Diseases Public Health Service research grants by CREST and ERATO (Japan Science and Technology Agency), and by grants-in-aid and a contract research fund for the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
文摘All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties.