依据压入理论和弹塑性接触有限元分析,提出了采用70.3°锥形压头完成压入测试并基于能量方法获取金属材料本构关系的方法(Constitutive relationship based on energy method of indentation,CR-EMI)。该方法揭示锥形压入能量比与Ho...依据压入理论和弹塑性接触有限元分析,提出了采用70.3°锥形压头完成压入测试并基于能量方法获取金属材料本构关系的方法(Constitutive relationship based on energy method of indentation,CR-EMI)。该方法揭示锥形压入能量比与Hollomon屈服应力之间存在线性律,结合该线性律和载荷P-位移h曲线实现了材料Hollomon模型参数求取;同时,提出采用Hollomon模型参数并基于能量方法预测布氏硬度的方法(Hardness based on EnergyMethod of Indentation,H-EMI)。通过对多种金属材料进行压入试验和有限元分析,验证了CR-EMI方法和H-EMI方法的有效性与精确性。展开更多
通过压入测试以获取工程服役结构、小型构件和焊接结构焊缝过渡区的材料单轴本构关系参数,且根据材料本构关系参数来估算材料的压入硬度对于工程设计和安全评估有重要意义。对于幂律材料,本文依据锥形压入试验原理和弹塑性接触有限元分...通过压入测试以获取工程服役结构、小型构件和焊接结构焊缝过渡区的材料单轴本构关系参数,且根据材料本构关系参数来估算材料的压入硬度对于工程设计和安全评估有重要意义。对于幂律材料,本文依据锥形压入试验原理和弹塑性接触有限元分析(EPFEA),揭示了不同锥角的锥形压头其压入能量比与屈服应力之间存在线性关系,提出了基于能量原理预测金属材料本构关系部分关键参数(弹性模量、屈服应力和硬化指数)的CR-EMI(Constitutive Rela-tionship based on Energy Method of Indentation)方法。同时,基于此种线性关系提出了由Hollomon本构关系模型参数预测硬度的H-EMI(Hardness based on Energy Method of Indentation)方法。通过对多种金属材料进行压入试验和有限元分析,验证了CR-EMI方法和H-EMI方法的有效性与精确性。展开更多
文摘依据压入理论和弹塑性接触有限元分析,提出了采用70.3°锥形压头完成压入测试并基于能量方法获取金属材料本构关系的方法(Constitutive relationship based on energy method of indentation,CR-EMI)。该方法揭示锥形压入能量比与Hollomon屈服应力之间存在线性律,结合该线性律和载荷P-位移h曲线实现了材料Hollomon模型参数求取;同时,提出采用Hollomon模型参数并基于能量方法预测布氏硬度的方法(Hardness based on EnergyMethod of Indentation,H-EMI)。通过对多种金属材料进行压入试验和有限元分析,验证了CR-EMI方法和H-EMI方法的有效性与精确性。
文摘通过压入测试以获取工程服役结构、小型构件和焊接结构焊缝过渡区的材料单轴本构关系参数,且根据材料本构关系参数来估算材料的压入硬度对于工程设计和安全评估有重要意义。对于幂律材料,本文依据锥形压入试验原理和弹塑性接触有限元分析(EPFEA),揭示了不同锥角的锥形压头其压入能量比与屈服应力之间存在线性关系,提出了基于能量原理预测金属材料本构关系部分关键参数(弹性模量、屈服应力和硬化指数)的CR-EMI(Constitutive Rela-tionship based on Energy Method of Indentation)方法。同时,基于此种线性关系提出了由Hollomon本构关系模型参数预测硬度的H-EMI(Hardness based on Energy Method of Indentation)方法。通过对多种金属材料进行压入试验和有限元分析,验证了CR-EMI方法和H-EMI方法的有效性与精确性。