采用导重法对惯性载荷下、以转动惯量为约束的拓扑优化问题进行求解。导重法经过改进,可以得到固定载荷下以整体柔顺度为目标、以转动惯量为约束的拓扑优化迭代公式。考虑到迭代计算时惯性载荷本身随各向同性固体微结构惩罚模型(Solid i...采用导重法对惯性载荷下、以转动惯量为约束的拓扑优化问题进行求解。导重法经过改进,可以得到固定载荷下以整体柔顺度为目标、以转动惯量为约束的拓扑优化迭代公式。考虑到迭代计算时惯性载荷本身随各向同性固体微结构惩罚模型(Solid isotropic micro-structures with penalization,SIMP)中的伪密度的变化,进一步推导重力作用下的单工况拓扑优化迭代公式和重力-离心力同时作用下的多工况拓扑优化迭代公式,并通过相应算例证明其可行性和有效性。将得到的迭代算法应用于飞行模拟器大臂的优化设计中,并将由此得到的拓扑形貌与商业化优化软件Optistruct中得到的结果进行比较。对比显示:该算法比传统的序列线性规划法(Sequential linear programming,SLP)或移动渐近线法(Method of moving asymptotes,MMA)的优化效果更佳,且二者的迭代效率差别不大。导重法为惯性载荷作用下以总体柔度为目标、以转动惯量为约束的拓扑优化问题提供新的有效的解决思路。展开更多
The guide-weight method is introduced to solve two kinds of topology optimization problems with multiple loads in this paper.The guide-weight method and its Lagrange multipliers' solution methods are presented fir...The guide-weight method is introduced to solve two kinds of topology optimization problems with multiple loads in this paper.The guide-weight method and its Lagrange multipliers' solution methods are presented first,and the Lagrange multipliers' soution method of problems with multiple constraints is improved by the dual method.Then the iterative formulas of the guide-weight method for topology optimization problems of minimum compliance and minimum weight are derived and coresponding numerical examples are calculated.The results of the examples exhibits that when the guide-weight method is used to solve topology optimization problems with multiple loads,it works very well with simple iterative formulas,and has fast convergence and good solution.After comparison with the results calculated by the SCP method in Ansys,one can conclude that the guide-weight method is an effective method and it provides a new way for solving topology optimization problems.展开更多
介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penaliz...介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。展开更多
结合固体各向同性惩罚微结构模型SIMP(Solid Isotropic Microstructures with Penalization),将导重法用于求解拓扑优化问题。针对导重法迭代公式中步长因子的取值问题,提出两种变步长因子的控制策略,以结构最优性指标为参考,自动确定...结合固体各向同性惩罚微结构模型SIMP(Solid Isotropic Microstructures with Penalization),将导重法用于求解拓扑优化问题。针对导重法迭代公式中步长因子的取值问题,提出两种变步长因子的控制策略,以结构最优性指标为参考,自动确定每步迭代的步长因子。同时引入密度补偿方法,以结构最优性指标为依据自动判断加入密度补偿的时机。利用经典拓扑优化算例,验证两种步长因子控制策略的优越性;通过细长梁算例,比较优化准则法OC(Optimality Criteria)和导重法的差异,分析对比两种步长因子控制策略施加密度补偿方法前后的计算结果。研究结果表明,两种步长因子控制策略能够取得更优解,有效提升求解效率;对于细长梁的拓扑优化问题,导重法求得的解较OC算法更具有全局性,优化效果更佳;密度补偿方法可进一步提升导重法的求解效率。展开更多
为了提高导重法求解拓扑优化问题的计算效果,提出一种改进的导重法,并引入了灰度过滤技术抑制优化过程中灰度单元的产生.首先基于RAMP(the rational approximation of material properties)模型结合导重法求解最小柔度拓扑优化问题的迭...为了提高导重法求解拓扑优化问题的计算效果,提出一种改进的导重法,并引入了灰度过滤技术抑制优化过程中灰度单元的产生.首先基于RAMP(the rational approximation of material properties)模型结合导重法求解最小柔度拓扑优化问题的迭代表达式,利用二分法对表达式中的拉格朗日乘子求法进行了改进;为减少优化后结构图像中的灰度单元数量,在迭代表达式中引入灰度过滤函数;最后将上述理论拓展到多工况拓扑优化问题中,采用归一化组合处理方法建立目标函数.对多工况拓扑优化问题的2个典型算例进行计算的结果表明,应用文中理论求解拓扑优化问题具有收敛稳定、求解快速、图像清晰的特点.展开更多
针对多工况结构拓扑优化问题中的载荷病态现象,基于RAMP(Rational Approximation of Material Properties)拓扑优化模型,提出应用灰色理论确定工况权重系数,并将应变能目标函数归一化的折衷规划模型法.通过专家评价方法获得工况权重系...针对多工况结构拓扑优化问题中的载荷病态现象,基于RAMP(Rational Approximation of Material Properties)拓扑优化模型,提出应用灰色理论确定工况权重系数,并将应变能目标函数归一化的折衷规划模型法.通过专家评价方法获得工况权重系数的灰色区间,结合灰色理论计算工况权重系数灰色区间的精确值,并采用导重法推导出多工况结构拓扑优化问题的求解迭代表达式.通过定义载荷比描述载荷病态的程度,对多工况结构拓扑优化典型算例在不同载荷比及不同工况权重系数下进行结构拓扑优化分析.优化结果表明,灰色权重折衷规划模型及求解方法对多工况结构拓扑优化问题具有高效、稳定的特点,能够克服载荷病态问题,并通过大跨度甲板强横梁的结构拓扑优化设计证明本文设计方法的有效性.展开更多
基于导重法构建了惯性载荷作用下的多材料结构拓扑优化数学模型,在体积约束下使得其结构柔度最小.将多材料拓扑优化问题分解为一系列单材料拓扑优化问题,采用材料属性有理近似模型(Rational Approximation of Material Properties,RAMP...基于导重法构建了惯性载荷作用下的多材料结构拓扑优化数学模型,在体积约束下使得其结构柔度最小.将多材料拓扑优化问题分解为一系列单材料拓扑优化问题,采用材料属性有理近似模型(Rational Approximation of Material Properties,RAMP)来表达密度与弹性模量间假定的非线性函数关系,利用导重法建立惯性载荷下设计变量的迭代表达式并通过数值算例验证导重法在考虑惯性载荷作用下多材料结构拓扑优化的有效性.算例结果表明:RAMP插值方法相比其他常用插值模型得到的拓扑构型更清晰,灰度单元更少,在算例1的对比中结构柔度最高降低了35.2%.受惯性载荷影响越大的设计区域其分布的材料弹性模量越大,且高模量密度比能够显著提升结构刚度.展开更多
The guide-weight method is introduced to solve the topology optimization problems of thermoelastic structures in this paper.First,the solid isotropic microstructure with penalization(SIMP)with different penalty factor...The guide-weight method is introduced to solve the topology optimization problems of thermoelastic structures in this paper.First,the solid isotropic microstructure with penalization(SIMP)with different penalty factors is selected as a material interpolation model for the thermal and mechanical fields.The general criteria of the guide-weight method is then presented.Two types of iteration formulas of the guide-weight method are applied to the topology optimization of thermoelastic structures,one of which is to minimize the mean compliance of the structure with material constraint,whereas the other one is to minimize the total weight with displacement constraint.For each type of problem,sensitivity analysis is conducted based on SIMP model.Finally,four classical 2-dimensional numerical examples and a 3-dimensional numerical example considering the thermal field are selected to perform calculation.The factors that affect the optimal topology are discussed,and the performance of the guide-weight method is tested.The results show that the guide-weight method has the advantages of simple iterative formula,fast convergence and relatively clear topology result.展开更多
文摘采用导重法对惯性载荷下、以转动惯量为约束的拓扑优化问题进行求解。导重法经过改进,可以得到固定载荷下以整体柔顺度为目标、以转动惯量为约束的拓扑优化迭代公式。考虑到迭代计算时惯性载荷本身随各向同性固体微结构惩罚模型(Solid isotropic micro-structures with penalization,SIMP)中的伪密度的变化,进一步推导重力作用下的单工况拓扑优化迭代公式和重力-离心力同时作用下的多工况拓扑优化迭代公式,并通过相应算例证明其可行性和有效性。将得到的迭代算法应用于飞行模拟器大臂的优化设计中,并将由此得到的拓扑形貌与商业化优化软件Optistruct中得到的结果进行比较。对比显示:该算法比传统的序列线性规划法(Sequential linear programming,SLP)或移动渐近线法(Method of moving asymptotes,MMA)的优化效果更佳,且二者的迭代效率差别不大。导重法为惯性载荷作用下以总体柔度为目标、以转动惯量为约束的拓扑优化问题提供新的有效的解决思路。
基金supported in part by the National Natural Science Founda-tion of China (Grant No 51075222)the Fund of State Key Laboratory of Tribology (Grant No SKLT10C02)the National Key Scientific and Technological Project (Grant No 2010ZX04004-116)
文摘The guide-weight method is introduced to solve two kinds of topology optimization problems with multiple loads in this paper.The guide-weight method and its Lagrange multipliers' solution methods are presented first,and the Lagrange multipliers' soution method of problems with multiple constraints is improved by the dual method.Then the iterative formulas of the guide-weight method for topology optimization problems of minimum compliance and minimum weight are derived and coresponding numerical examples are calculated.The results of the examples exhibits that when the guide-weight method is used to solve topology optimization problems with multiple loads,it works very well with simple iterative formulas,and has fast convergence and good solution.After comparison with the results calculated by the SCP method in Ansys,one can conclude that the guide-weight method is an effective method and it provides a new way for solving topology optimization problems.
文摘介绍了导重准则法基本原理并将其应用于杆系结构及连续体结构拓扑优化。对于重量约束结构性能最优化和多性态约束结构重量最小化问题的连续结构拓扑优化问题,详细推导了导重法与变密度SIMP(Solid Isotropic Microstructure with Penalization)法相结合的更加规范的全新优化准则公式,并给出了相应的算例。计算结果表明,导重法不仅适用于传统的结构尺寸优化与形状优化,而且可很好地求解结构拓扑优化问题,并具有公式简单、通用性强、收敛速度快及优化效果好的优点。
文摘为了提高导重法求解拓扑优化问题的计算效果,提出一种改进的导重法,并引入了灰度过滤技术抑制优化过程中灰度单元的产生.首先基于RAMP(the rational approximation of material properties)模型结合导重法求解最小柔度拓扑优化问题的迭代表达式,利用二分法对表达式中的拉格朗日乘子求法进行了改进;为减少优化后结构图像中的灰度单元数量,在迭代表达式中引入灰度过滤函数;最后将上述理论拓展到多工况拓扑优化问题中,采用归一化组合处理方法建立目标函数.对多工况拓扑优化问题的2个典型算例进行计算的结果表明,应用文中理论求解拓扑优化问题具有收敛稳定、求解快速、图像清晰的特点.
文摘针对多工况结构拓扑优化问题中的载荷病态现象,基于RAMP(Rational Approximation of Material Properties)拓扑优化模型,提出应用灰色理论确定工况权重系数,并将应变能目标函数归一化的折衷规划模型法.通过专家评价方法获得工况权重系数的灰色区间,结合灰色理论计算工况权重系数灰色区间的精确值,并采用导重法推导出多工况结构拓扑优化问题的求解迭代表达式.通过定义载荷比描述载荷病态的程度,对多工况结构拓扑优化典型算例在不同载荷比及不同工况权重系数下进行结构拓扑优化分析.优化结果表明,灰色权重折衷规划模型及求解方法对多工况结构拓扑优化问题具有高效、稳定的特点,能够克服载荷病态问题,并通过大跨度甲板强横梁的结构拓扑优化设计证明本文设计方法的有效性.
文摘基于导重法构建了惯性载荷作用下的多材料结构拓扑优化数学模型,在体积约束下使得其结构柔度最小.将多材料拓扑优化问题分解为一系列单材料拓扑优化问题,采用材料属性有理近似模型(Rational Approximation of Material Properties,RAMP)来表达密度与弹性模量间假定的非线性函数关系,利用导重法建立惯性载荷下设计变量的迭代表达式并通过数值算例验证导重法在考虑惯性载荷作用下多材料结构拓扑优化的有效性.算例结果表明:RAMP插值方法相比其他常用插值模型得到的拓扑构型更清晰,灰度单元更少,在算例1的对比中结构柔度最高降低了35.2%.受惯性载荷影响越大的设计区域其分布的材料弹性模量越大,且高模量密度比能够显著提升结构刚度.
基金supported by the National Natural Science Foundation of China(Grant No.51375251)the National Basic Research Program("973"Program)(Grant No.2013CB035400)of China
文摘The guide-weight method is introduced to solve the topology optimization problems of thermoelastic structures in this paper.First,the solid isotropic microstructure with penalization(SIMP)with different penalty factors is selected as a material interpolation model for the thermal and mechanical fields.The general criteria of the guide-weight method is then presented.Two types of iteration formulas of the guide-weight method are applied to the topology optimization of thermoelastic structures,one of which is to minimize the mean compliance of the structure with material constraint,whereas the other one is to minimize the total weight with displacement constraint.For each type of problem,sensitivity analysis is conducted based on SIMP model.Finally,four classical 2-dimensional numerical examples and a 3-dimensional numerical example considering the thermal field are selected to perform calculation.The factors that affect the optimal topology are discussed,and the performance of the guide-weight method is tested.The results show that the guide-weight method has the advantages of simple iterative formula,fast convergence and relatively clear topology result.